ABSTRACT: **Purpose:** Researchers have suggested that difficulties with word finding or retrieval may be associated with disfluent speech (e.g., Bloodstein & Ratner, 2008; Wingate, 1988).

Method: This study assessed the word-finding and vocabulary abilities of 30 adults who do (AWS) and do not stutter (AWNS) by administering to them the Test of Adult Word Finding (TAWF; German, 1990), the Peabody Picture Vocabulary Test—Third Edition (PPVT–III; Dunn & Dunn, 1997), the Expressive Vocabulary Test (EVT; Williams, 1997), and a computerized picture-naming test (CPNT).

Results: Results indicated that AWS scored significantly lower than AWNS on the TAWF and PPVT–III. AWS also exhibited significantly slower picture-naming latencies on the CPNT. No significant between-group differences were found for participants’ EVT scores.

Conclusion: Findings suggest that delays in retrieving the appropriate word during speech-language production may be related to increases in speech disfluencies for some AWS.

KEY WORDS: stuttering, word finding, vocabulary, adults who stutter, picture naming
The covert repair hypothesis posits that people who stutter may have a slower than normal ability to phonologically encode preverbal messages. It is thought that this difficulty leads to an increased probability of mis-selecting appropriate speech sound units, causing increases in speech repairs that, in turn, result in overt stutters. Whereas the covert repair hypothesis assumes that phonological disruptions are the main contributor to stuttering, which has some empirical support (e.g., LaSalle & Carpenter, 1994; Wijnen & Boers, 1994), one could reasonably posit that people who stutter may also have slower than normal abilities in related linguistic areas, such as lexical access, encoding, retrieval, or storage.

It would seem that delays in lexical encoding (or word finding) would not be problematic if lexical items were selected at a rate commensurate with the speaker’s ability to activate these items. However, if a speaker plans for speech-language production at an inappropriately fast rate, and selects lexical items too soon, there is an increased probability that inappropriate words may be selected and may become part of the articularatory plan. If the speaker detects and then tries to repair these errors, he or she may freeze, cut off, or stop the forward flow of speech-language production, resulting in hesitations, prolongations, and/or repetitions. By extending the covert repair hypothesis in this fashion, one might hypothesize that delays in lexical retrieval (i.e., word finding) may contribute to linguistic planning errors, which (for reasons mentioned above) lead to increases in speech disfluencies. Although adhering to this line of conjecture, one might also predict that the relationship between latency of word retrieval and frequency of speech disfluencies during conversation speech would be positively correlated for people who stutter.

The above speculation regarding the relationship between stuttering and lexical retrieval (i.e., word finding) appears plausible given that people who stutter, most notably children, tend to score lower on standardized measures of receptive vocabulary than their normally fluent peers (Anderson & Conture, 2000; Meyers & Freeman, 1985; Murray & Reed, 1977; Pellowski & Conture, 2005; Ryan, 1992; Westby, 1979). Similarly, in their landmark review, Andrews et al. (1983) noted that children who stutter scored lower than children who do not stutter on the Peabody Picture Vocabulary Test (PPVT; Dunn & Dunn, 1997) and subtests of the Illinois Test of Psycholinguistic Ability (Kirk & Kirk, 1968).

Pellowski and Conture (2005) more recently reported significant differences between children who do and do not stutter on the PPVT—Third Edition (PPVT–III; Dunn & Dunn, 1997) and the Expressive Vocabulary Test (EVT; Williams, 1997). It is important to note that although studies have found significant group differences in participants' receptive vocabulary scores (e.g., Meyers & Freeman, 1985; Pellowski & Conture, 2005), children who stutter exhibit receptive vocabulary abilities that are within normal limits (Bernstein Ratner, 1997). In contrast to these findings, a few investigators have reported results indicating no group differences. For example, Watkins (2005) summarized findings indicating no significant differences in language ability between children who do and do not stutter (see also Hage, 2001; Perozzi and Kunze, 1969) also found no differences between the two groups on tests of vocabulary.

Although several researchers have studied differences in vocabulary abilities between people who do and do not stutter, relatively few empirical studies have directly examined their word-finding abilities. Weuffen (1961) conducted one of the earliest studies in this area by reporting word-finding coefficients derived from a word-finding task and concluded that people who stutter are more likely to have word-finding deficits than nonstutterers. Telser (1971) also conducted a study of word-finding abilities and reported that 55% of children who stutter had a word-finding problem, whereas only 15% of children who do not stutter exhibited this deficit. Furthermore, MacDonald and Beale (1989) found that the mean accuracy score on the Test of Word Finding (German, 1986) was significantly lower for school-age children who stutter when compared to a control group.

Findings from other investigations have suggested that adults who stutter (AWS) may exhibit deficits similar to those experienced by children who stutter. Prins, Main, and Wampler (1997), as well as Newman and Bernstein Ratner (2007), reported findings that indicated that word form encoding and retrieval may be less efficient in AWS (when compared to adults who do not stutter, AWNS). Likewise, Bosshardt and Fransen (1996) found that the semantic activation abilities of AWS may be slow or inefficient during a sentence-processing task. Other researchers who have used sentence-processing tasks reported related findings for AWS (e.g., Weber-Fox, 2001). Finally, Hennessey, Nang, and Beilby (2008) recently reported somewhat conflicting findings that AWS were significantly slower (than AWNS) to respond in a choice reaction time task, but not in a simple reaction time or picture-naming task.

Given the above, evidence accumulated thus far suggests that people who stutter may exhibit difficulties with speech-language production processes that, in turn, may be related to increases in instances of stuttering. Indeed, current theories of stuttering, such as the covert repair hypothesis (Postma & Kolk, 1993), are based on the notion that people who stutter may have discrepancies or dissimilarities between the linguistic processes that are involved in speech-language production (see also Anderson, Pellowski, & Conture, 2005; Perkins, Kent, & Curlee, 1991; Wingate, 1988), and several investigators have suggested that disturbances in these processes may be associated with instances of stuttering. For example, Wingate (1988, p. 241) stated that “stuttering reflects some disturbance in lexical access…the quick retrieval of appropriate words critical to maintaining ongoing speech.”

1It should be noted that investigators have used the Test of Adult Word Finding (TAWF; German, 1990) to study the link between word retrieval and linguistic planning in typical speakers and those with communication disorders other than stuttering. For example, Hough (2007b) assessed the word-finding abilities of normal older adults and reported three word-finding profiles as related to linguistic planning abilities. Hough (2008) also reported various patterns of word retrieval failure based on results from the TAWF in a group of patients with a traumatic brain injury as well as a group of patients with aphasia (Hough, 2007a).
One indirect result of these delays in lexical retrieval could manifest itself as repetitions of words that are employed to maintain one’s conversational turn by preventing a conversational partner from interrupting while the speaker attempts to encode or retrieve a lexical item subsequent to the word being repeated (Conture, 2001). Perkins et al. (1991) also suggested that slow retrieval of linguistic frames could be associated with moments of stuttering, and findings from Prins et al. (1997) indicated that stuttering might result when difficulties arise during the early processes of lexicalization.

The purpose of this investigation was to test the hypothesis that AWS have difficulties with lexical retrieval or word finding as well as word storage (i.e., vocabulary abilities). Based on the aforementioned theoretical speculation and reported findings, it was predicted that AWS would be slower than their normally fluent peers at word retrieval, revealed by longer (i.e., slower) picture-naming latencies during responses to a computerized picture-naming test (CPNT) created by the author. It was also predicted that AWS would exhibit lower scores on standardized word-finding as well as receptive and expressive vocabulary measures. Finally, it was expected that the relationship between stuttering frequency during conversational speech and latency of word retrieval would be positively correlated for AWS.

METHOD

Participants

Study participants consisted of 30 adults ranging in age from 18.4 (years;months) to 33.6, all of whom were native speakers of American English. The AWS group consisted of 15 participants (\(M = 24.7, SD = 5\) months). The AWNS group consisted of 15 adults, gender and age-matched \(\pm 36\) months to the AWS group (\(M = 23.6, SD = 3\) months). Because more males than females are typically observed to stutter (Bloodstein & Ratner, 2008), the gender distribution of the participants consisted of 11 males and four females per group. None of the participants had any known or reported hearing, neurological, developmental, academic, intellectual, or emotional problems. Additionally, all participants passed a hearing screening test (bilateral pure-tone testing at 20 dB SPL for 500, 1000, 2000, 4000 Hz) and exhibited normal tympanograms.

The participants in both groups were matched for education level. For the AWS group, nine participants were college students, four had completed college, and two had completed a graduate degree. Likewise, for the AWNS group, 10 participants were college students, four had completed college, and one had completed a graduate degree (all 30 participants had completed high school). Eleven of the 15 AWS had received formal treatment for stuttering during their lifetime. Administration of the standardized speech and language measures, as well as the collection and analysis of speech samples, was performed by an American Speech-Language-Hearing Association-certified speech-language pathologist (SLP; the author) and one graduate-level student clinician who had been extensively trained to identify and code stuttering behaviors.

Collection of Speech Samples and Measures of Speech Disfluency

Each participant sat next to the clinician and/or graduate student at a table in a sound-proofed room. A spontaneous speech sample of at least 300 words was collected during the middle 10 min of a 20-min conversation between the clinician and participant. Similar to measures of childhood disfluency reported by Pellowski and Conture (2002, 2005), the following measures of speech disfluencies were made for each of the 30 participants: (a) total disfluencies; percentage of total disfluencies ("stuttering-like" plus "other" disfluencies; see below) per 100 words spoken based on the 300-word sample; (b) stuttering-like disfluencies: percentage of stuttering-like disfluencies (part-word repetition, single-syllable word repetition, disrhythmic phonation [i.e., sound prolongation and blocks], and tense pause), after Yairi and Ambrose (1992), per 100 words spoken based on the 300-word sample; and (c) other disfluencies: percentage of other disfluencies (polysyllabic word repetition, phrase repetition, interjection, and revision-incomplete phrase), after Yairi and Ambrose, per 100 words spoken based on the 300-word sample. Finally, the Stuttering Severity Instrument for Children and Adults—3 (SSI–3; Riley, 1994) was administered and was used to assess each participant’s stuttering severity.

Group Classification and Inclusion Criteria

A participant was assigned to the AWS group if he or she (a) exhibited three or more stuttering-like disfluencies per 100 words of conversational speech (based on the 300-word sample) and (b) received an overall score of 18 (mild severity) or above on the SSI–3. Conversely, a participant was assigned to the AWNS group if he or she (a) exhibited two or fewer stuttering-like disfluencies per 100 words of conversational speech (based on the 300-word sample) and (b) received an overall score of 17 (less than mild) or below on the SSI–3. For the group of AWS, 10 participants were rated as mild on the SSI–3, four were rated as moderate, and one was rated as severe. All of the AWNS were rated as very mild (or n/a) on the SSI–3.

Word-Finding, Receptive Vocabulary, and Expressive Vocabulary Measures

All participants completed three standardized word finding and vocabulary assessments: (a) the Test of Adult Word Finding (Brief Test; TAWF; German, 1990), a measure of word-finding ability; (b) the PPVT–III, a measure of receptive vocabulary; and (c) the EVT, a measure of expressive vocabulary.

CPNT

In order to collect additional information regarding participants’ word-finding abilities, a CPNT was developed and was administered to all participants. Participants sat in an office chair, facing a standard desktop computer and 20-inch monitor, and were instructed to name a series of
28 pictures (presented one at a time) “as fast as you can and as soon as you see them.” The computer controlled the presentation of the target picture and recorded each participant’s picture-naming latency (in ms), which was measured from the target picture onset to the triggering of the microphone’s voice key/gating switch by the onset of the participant’s verbal-naming response. Each picture was presented 1,500 ms after each of the participant’s verbal-naming responses. Presentation of the target pictures and collection and analysis of picture-naming latencies was performed using E-Prime, which is a commercially available experimental hardware and software operating system.

Picture (Target) Stimuli and Errors
During the CPNT, each participant was presented with the same set of 28 pictures, which were selected from a standardized set of 260 pictures that were developed by Snodgrass and Vanderwart (1980) and were subsequently normed for name agreement, familiarity, and complexity for 5- to 7-year-old children by Cycowicz, Friedman, and Rothstein (1997). A pilot investigation (Anderson, Pellowski, Conture, Melnick, & Ohde, 2001) had shown that this group of 28 pictures was associated with an overall mean percentage correct naming score of 97% for 3- to 5-year-old typically developing children (N = 35). The Appendix lists the standardized set of 28 pictures that were (also) used in a previous investigation conducted by the author and a colleague (Pellowski & Conture, 2005). Picture-naming responses were considered in error (and the associated naming latency was excluded from further analysis) if the participant’s response met any one of the following criteria: (a) deviated in any way from the picture’s “intended name”; (b) was preceded by, or associated with, any type of speech disfluency (e.g., um...car; fff-fork); or (c) generated a speech reaction time greater or less than 2 SDs from the mean of all participant responses (see Ratcliff, 1993, for various analytical procedures for dealing with naming latency/reaction time outliers).

Interjudge and Intrajudge Reliability: Measures of Speech Disfluency
Interjudge and intrajudgement measurement reliability was calculated for judgments of stuttering-like and other disfluencies based on four randomly selected speech samples obtained from the AWS group and three from the AWNS group (total data corpus = 2,100 total words; with 300 words per participant). The author and a graduate-level student clinician (extensively trained to identify and code speech disfluencies) observed and listened to video recordings of the seven conversational speech samples and re-identified all instances of stuttering-like and other disfluencies within each sample. Using a “total percentage agreement” index (i.e., [smaller total count divided by larger total count] × 100), interjudge (and intrajudge) agreement percentages included the following: (a) stuttering-like disfluencies: 88% (94%) and other disfluencies: 92% (95%).

Data Analysis
Percentile ranks were assessed to determine performance on the standardized word-finding (TAWF), receptive vocabulary (PPVT–III), and expressive vocabulary (EVT) measures across the two groups. Picture-naming latencies (in ms) were also analyzed to assess between-group differences on the CPNT. For these four dependent variables, a series of t tests was used to determine any differences between the two groups of participants, and Bonferroni corrections were applied (based on an alpha level of .05) in determining significance. In addition, the relationship between stuttering frequency and picture-naming latency was examined by calculating a Pearson product–moment correlation coefficient (r). Data were initially recorded and organized on a standard desktop computer using Microsoft Excel software and were subsequently entered and analyzed using SPSS for Windows. Descriptive statistics were computed using Excel and SPSS and are reported in the form of means, standard deviations, and standard errors of the mean for each measure.

RESULTS
Descriptive Information
Table 1 provides a summary of the findings from the speech disfluency measures and the SSI–3 for all participants. Bonferroni corrected t tests were used to assess between-group differences for the three speech disfluency measures. As expected (given group classification procedures), AWS, when compared to AWNS, exhibited significantly more stuttering-like disfluencies, t(28) = 6.44, p < .01, and total disfluencies, t(28) = 6.41, p < .01, and scored significantly higher on the SSI–3, t(28) = 6.32, p < .01.

Between-Group Differences: Word-Finding and Receptive/Expressive Vocabulary Measures
Table 2 provides a summary of the findings from the standardized word-finding and vocabulary measures for the two

Table 1. Mean and standard error of measure (SEM) speech disfluency and Stuttering Severity Instrument—3 (SSI–3; Riley, 1994) measures for adults who do (AWS; n = 15) and do not stutter (AWNS; n = 15).

<table>
<thead>
<tr>
<th>Speech disfluency measure</th>
<th>AWS</th>
<th>SEM</th>
<th>AWNS</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stuttering-like disfluencies (per 100 words)</td>
<td>8.0</td>
<td>1.1</td>
<td>.6</td>
<td>.2</td>
</tr>
<tr>
<td>Total speech disfluencies (per 100 words)</td>
<td>10.6</td>
<td>1.2</td>
<td>2.6</td>
<td>.3</td>
</tr>
<tr>
<td>SSI–3 (24 = mild; 8 = n/a)</td>
<td>24</td>
<td>.6</td>
<td>8</td>
<td>.2</td>
</tr>
</tbody>
</table>
groups of participants. Similarly, Figure 1 presents the average standardized score (expressed as percentile ranks) on the TAWF, PPVT–III, and EVT for the two groups. A series of Bonferroni corrected \(t\) tests indicated that there was a significant difference in these scores between the groups on the TAWF, \(t(28) = -2.02, p < .05\), and the PPVT–III, \(t(28) = -2.72, p < .05\), indicating that AWS scored significantly lower than AWNS on both measures. Conversely, there was not a significant difference in scores between the two groups for the EVT, \(t(28) = -1.71, p > .05\).

Between-Group Differences:

Picture-Naming Latencies

Figure 2 presents the average picture-naming latencies (in ms) from administration of the CPNT for the two groups. Results indicated that AWS produced significantly slower (i.e., longer) picture-naming latencies when compared to AWNS, \(t(28) = 3.2, p < .01\). Specifically, the average picture-naming latency (across all trials) for the group of 15 AWS was 831 ms, whereas the average latency for the group of 15 AWNS was 719 ms.

Within-Group Analysis: Picture-Naming Latency and Amount of Stuttering

Figure 3 presents the relationship between the percentage of stuttering (per 100 words during conversational speech) and picture-naming latency (in ms; based on responses to the CPNT) for the AWS group. Results indicated that there was a significant positive correlation between these two variables \((r = .60, p < .05)\). Therefore, greater incidences of stuttering were associated with longer (i.e., slower) picture-naming latencies for the AWS group.

DISCUSSION

This investigation sought to test an extension of the covert repair hypothesis proposed by Postma and Kolk (1993; Kolk & Postma, 1997), which suggests that people who stutter may have slower than normal lexical encoding (i.e., word finding) abilities. Indeed, some theories of stuttering suggest that people who stutter may exhibit difficulty with lexical encoding and perhaps even storage or retrieval (e.g., Wingate, 1988). Because people who stutter may not have as well-developed linguistic abilities as their normally fluent peers (see Bloodstein, 1995; Bloodstein & Ratner, 2008, for extensive reviews), and given that lexical encoding and linguistic processing may play an important role in theories of stuttering, examination of the word-finding and vocabulary abilities of AWS appears warranted.

Word-Finding and Receptive/Expressive Vocabulary Measures

The first main finding indicated that AWS scored significantly lower than AWNS on standardized measures of word-finding and receptive vocabulary, but not on a measure of expressive vocabulary. Results from the current investigation parallel findings from several studies that reported that children who stutter scored lower than their normally fluent peers on measures of receptive vocabulary (Anderson & Conture, 2000; Andrews et. al., 1983; Meyers & Freeman, 1985; Murray & Reed, 1977; Pellowski & Conture, 2005; Ryan, 1992; Westby, 1979). In addition, current findings support those reported by Frins, Main, and Wampler (1997), who found significant group differences between AWS and AWNS on the PPVT, even though they attempted to match raw scores between the two groups of participants. Conversely, results do not align with findings reported by Hennessey et al. (2008), who found nonsignificant between-group differences among PPVT scores; in fact, their AWS group scored higher on the PPVT than their normally fluent peers.

Although several investigators have studied differences in receptive and expressive vocabulary abilities between
people who do and do not stutter, relatively few empirical studies have directly examined their word-finding abilities. Current findings support those reported by Weuffen (1961), who calculated word-finding coefficients derived from a word-finding task and found that people who stutter are more likely to have word-finding deficits than nonstutterers. Likewise, current findings confirm Telser’s (1971) results with children, who reported that more than half of the stuttering participants exhibited a word-finding problem whereas only 15% of nonstuttering participants exhibited this deficit. Using a previous yet similar version of the current standardized test of word finding (i.e., the Test of Word Finding; German, 1986), MacDonald and Beale (1989) found results consistent with the current study; mean accuracy scores on this measure were significantly lower for school-age children who stutter when compared to a control group.

Picture-Naming Latencies

The second main finding demonstrated that AWS exhibited significantly slower picture-naming latencies when compared to AWNS, based on responses to the CPNT. Numerous researchers have measured the speech (and nonspeech) reaction times or latencies of AWS and AWNS, as evidenced by Bloodstein and Ratner’s (2008, Table 5-3) extensive review. Using various experimental paradigms, several studies have demonstrated that AWS exhibit slower speech reaction times or latencies when compared to AWNS (e.g., Peters, Hulstijn, & Starkweather, 1989), whereas some have reported no differences between the two groups (e.g., Wijnen & Boers, 1994).

Of the studies summarized by Bloodstein and Ratner (2008), current findings support those reported by Peters et al. (1989) and by Starkweather, Hirschman, and Tannenbaum (1976), who found that AWS were slower than controls when responding to a reaction time task by producing a nonsense syllable, word, or sentence. Results do not support those reported by Hennessey et al. (2008), however, who found no significant differences between the two groups when requiring participants to respond to a picture-naming task (a paradigm perhaps most similar to the current study). Wijnen and Boers (1994) also found no significant differences between the two groups when presenting a cue word and requiring word responses. Despite these somewhat conflicting findings, results from the current investigation seem to provide further support for Bloodstein and Ratner’s (2008, p. 216) claim that, “In sum, many studies have shown some subtle differences between stutterers and fluent speakers in lexical encoding skills or their presumed cortical processing indices.”

Relationship Among Amount of Stuttering, Picture-Naming Latency, and the Covert Repair Hypothesis

As noted, the covert repair hypothesis (Kolk & Postma, 1997; Postma & Kolk, 1993) posits that people who stutter may have slower than normal phonological encoding abilities. The proposed extension of this hypothesis suggests that people who stutter may have slower than normal abilities in related linguistic areas such as lexical encoding and retrieval (or storage). Results from this investigation support this extension of the covert repair hypothesis: AWS were slower than their normally fluent peers at lexical retrieval, as evidenced by lower scores on norm-based tests of word finding and lexical storage (receptive vocabulary) and significantly slower picture-naming latencies. Moreover, AWS exhibited a significant, positive relationship between percentage of stuttering in conversational speech and
Based on these findings, one might speculate that some people who stutter are slower or less efficient than their normally fluent peers in their ability to encode lexical information. Perhaps these individuals may select lexical items at a rate that is not commensurate with their ability to activate these items during conversational speech. If AWS do exhibit a slow or weak rate of activation of target word units, they may be more likely to make mis-selections while planning for speech-language production because both intended and unintended word nodes may be activated to the same degree at the point of selection (Conture, 2001; Kolk & Postma, 1997). Subsequently, if unintended word(s) are selected and detected by the speaker, he or she may attempt to repair these errors, resulting in hesitations, prolongations, or repetitions during ongoing speech, which is the hallmark of stuttering behavior.

Conclusion
These findings suggest that AWNS may have more efficient and well-developed word-finding and receptive vocabulary abilities when compared to AWS. Perhaps AWS are inherently slower to retrieve words from their mental lexicons, even for words that are associated with complete semantic representations. If AWS are slow at word retrieval (i.e., word finding), this may result in frequent stalling, hesitating, or repeating of sounds and/or words during speech-language planning and production as they attempt to retrieve the appropriate word. Moreover, this scenario may be more likely to occur when the speaker experiences real or perceived pressure to speak at a rate faster than his or her linguistic system can reasonably manage, resulting in an increase of speech disfluencies. Finally, it is hoped that findings from this investigation may provide important insights into the relationship between lexical retrieval (i.e., word finding) and stuttering, and hopefully advance our understanding of how linguistic processes relate to disfluent speech for individuals who stutter.

ACKNOWLEDGMENT
The author would like to extend his sincere appreciation to all of the individuals who agreed to participate in this investigation and to the Towson University graduate students who assisted with the methodological procedures. This study was supported (in part) by a Towson University faculty development research grant.

REFERENCES

Contact author: Mark W. Pellowski, Department of Audiology, Speech Language Pathology, and Deaf Studies, Towson University, 8000 York Road, Towson, MD 21252, E-mail: mpellowski@ towson.edu
APPENDIX. TWENTY-EIGHT PICTURES USED IN THE COMPUTERIZED PICTURE-NAMING TASK

<table>
<thead>
<tr>
<th>#</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>apple</td>
</tr>
<tr>
<td>2</td>
<td>banana</td>
</tr>
<tr>
<td>3</td>
<td>umbrella</td>
</tr>
<tr>
<td>4</td>
<td>tree</td>
</tr>
<tr>
<td>5</td>
<td>table</td>
</tr>
<tr>
<td>6</td>
<td>star</td>
</tr>
<tr>
<td>7</td>
<td>spoon</td>
</tr>
<tr>
<td>8</td>
<td>car</td>
</tr>
<tr>
<td>9</td>
<td>sock</td>
</tr>
<tr>
<td>10</td>
<td>carrot</td>
</tr>
<tr>
<td>11</td>
<td>sandwich</td>
</tr>
<tr>
<td>12</td>
<td>pumpkin</td>
</tr>
<tr>
<td>13</td>
<td>corn</td>
</tr>
<tr>
<td>14</td>
<td>pig</td>
</tr>
<tr>
<td>15</td>
<td>elephant</td>
</tr>
<tr>
<td>16</td>
<td>flower</td>
</tr>
<tr>
<td>17</td>
<td>pencil</td>
</tr>
<tr>
<td>18</td>
<td>fork</td>
</tr>
<tr>
<td>19</td>
<td>frog</td>
</tr>
<tr>
<td>20</td>
<td>butterfly</td>
</tr>
<tr>
<td>21</td>
<td>sun</td>
</tr>
<tr>
<td>22</td>
<td>turtle</td>
</tr>
<tr>
<td>23</td>
<td>monkey</td>
</tr>
<tr>
<td>24</td>
<td>hat</td>
</tr>
<tr>
<td>25</td>
<td>leaf</td>
</tr>
<tr>
<td>26</td>
<td>heart</td>
</tr>
<tr>
<td>27</td>
<td>ladder</td>
</tr>
<tr>
<td>28</td>
<td>key</td>
</tr>
</tbody>
</table>