Vocal Fold Paresis and Paralysis Surgical Treatment

Marshall E. Smith, MD
Voice Disorders Center
Division of Otolaryngology/Head and Neck Surgery
The University of Utah
Salt Lake City, UT

ASHA Convention, San Diego, CA November 19, 2011
Unilateral Vocal Fold Paralysis and Paresis
Options for Management

• Do nothing
• Voice Therapy
• Surgery
 – Injection laryngoplasty (IL)
 – Medialization laryngoplasty (ML)
 – Laryngeal reinnervation (LR)
Surgery for Paralytic Dysphonia
Short History

- Medialization laryngoplasty, Payr 1907
- Injection laryngoplasty, Brünings 1911
- Laryngeal reinnervation, Horsley 1909, Frazier 1924
Surgical Options in Unilateral Vocal Fold Paresis and Paralysis

• Medialization
 – Injection
 • Collagen/Cymetra®, Fat, Radiesse® Voice and Voice Gel, HA gels, Gelfoam,
 – Surgical implant
 • Gortex, silastic, titanium, hydroxylapatite

• Reinnervation
 – Ansa-RLN anastomosis, nerve-muscle pedicle, direct nerve implant, muscle-nerve-muscle graft
Phonosurgery Classification

- Vocal fold microsurgery
- Vocal fold injection laryngoplasty
 - Office or OR
- Laryngeal framework procedures
 - Medialization – type 1
 - Lateralization – type 2
 - Shortening – type 3
 - Lengthening (CT approximation/subluxation) – type 4
 - Arytenoid adduction
- Laryngeal reinnervation
Viscoelasticity

Why is it important for vocal fold injectables?
TABLE II.
Dynamic Viscosity of Implantable Biomaterials and Human Vocal Fold Mucosal Tissues Measured at 10 Hz and Extrapolated to 100 Hz.

<table>
<thead>
<tr>
<th>Material Sample</th>
<th>Measured at 10 Hz</th>
<th>Extrapolated to 100 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polytetrafluoroethylene (Teflon)</td>
<td>116.144</td>
<td>10.186</td>
</tr>
<tr>
<td>Gelatin (Gelfoam)</td>
<td>21.297</td>
<td>2.335</td>
</tr>
<tr>
<td>GAX collagen (Phonagel or Zyplast)</td>
<td>12.844</td>
<td>1.480</td>
</tr>
<tr>
<td>Noncrosslinked collagen (Zyderm)</td>
<td>8.563</td>
<td>0.980</td>
</tr>
<tr>
<td>Human abdominal subcutaneous fat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(70-year-old woman)</td>
<td>3.026</td>
<td>0.296</td>
</tr>
<tr>
<td>Vocal fold mucosa (72-year-old man)</td>
<td>2.702</td>
<td>0.281</td>
</tr>
<tr>
<td>Vocal fold mucosa (62-year-old man)</td>
<td>0.897</td>
<td>0.099</td>
</tr>
</tbody>
</table>

Extrapolation was based on simple linear least-squares regression (see Equation 3).
Viscoelasticity of hyaluronan and non-hyaluronan based vocal fold injectables

- Hyaluronan-based materials better suited for superficial injection
- Non-hyaluronan materials better for muscle or paraglottic space injection

Caton, Thibeault, Klemuk, Smith Laryngoscope 2007
Radiesse® – hydroxyapatite microspheres in a gel suspension

- Radiesse Voice® - lasts 6-24 months
- Radiesse Voice Gel – lasts 1-2 months
- FDA approved implant
- Average length of benefit 18.6 months
- 3-20% complication rate due to mis-injection (too superficial or too deep)

Caroll and Rosen, Laryngoscope Feb 2011
Vocal Fold micronized acellular dermal matrix (Cymetra®) Injection

- Lasts 2-12 months (average 3-6 months)
- Office or OR procedure
- Can be repeated
Fat Injection Laryngoplasty

- **Advantages**
 - Viscoelastic properties close to vocal fold
 - No foreign material implant

- **Disadvantages**
 - General anesthetic procedure
 - Donor site morbidity
 - Extrusion of fat
 - Difficult to judge how much to inject
 - High incidence of resorption, need for secondary procedure (33-50%)

Vocal Fold Injectables in 2011

<table>
<thead>
<tr>
<th>Material</th>
<th>Viscoelasticity</th>
<th>Duration</th>
<th>Office/OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiesse Voice</td>
<td>----</td>
<td>6-24 months</td>
<td>Favor OR</td>
</tr>
<tr>
<td>Radiesse Voice Gel</td>
<td>+/-</td>
<td>6-12 wk</td>
<td>Both</td>
</tr>
<tr>
<td>MAD / (Cymetra)</td>
<td>----</td>
<td>2-12 mo</td>
<td>Both</td>
</tr>
<tr>
<td>Human Collagen (Cosmoplast)</td>
<td>----</td>
<td>2-12 mo</td>
<td>Both</td>
</tr>
<tr>
<td>Bovine collagen (Zyplast)</td>
<td>--</td>
<td>2-4 mo</td>
<td>Both</td>
</tr>
<tr>
<td>HA gels</td>
<td>++</td>
<td>2-4 mo</td>
<td>Both</td>
</tr>
<tr>
<td>Fat</td>
<td>+++</td>
<td>2-12 mo</td>
<td>OR</td>
</tr>
</tbody>
</table>
When to consider an injection laryngoplasty?

- In the 1st three months after symptom onset
- When spontaneous improvement is possible, e.g., nerve is intact after surgical procedure, or nerve integrity unknown
- Patient is symptomatic – breathy dysphonia, short MPT, aspiration
- Known metastatic cancer w vocal fold paralysis
- Office vs. OR
 - Patient preference and ability to tolerate office procedure
 - Patient co-morbidities
 - Surgeon preference, experience, equipment
 - Patient anatomy
Office vs. OR Injection
Office Injection Laryngoplasty Techniques

- Thyroid notch
- Trans-cartilage
- Crico-thyroid

peroral

Rigid or Flexible scope
Injection Laryngoplasty
Effect on need for subsequent treatment

- Two recent studies – retrospective reviews
 - 54 patients with UVP (Yung et al, 2011)
 - 19 had temporary injection medialization, five subsequently had thyroplasty (35%)
 - 35 were followed conservatively, 23 subsequently had thyroplasty (65%)
 - 35 patients with UVP who all had office injection laryngoplasty (Friedman et al, 2010)
 - 32 patients injected < 6 months after onset, 12 required subsequent thyroplasty (37.5%)
 - 3 patients injected > 6 months after onset, 3 required subsequent thyroplasty (100%)

- Message: Early injection laryngoplasty after UVP onset may reduce the need for later permanent treatment
Medialization Laryngoplasty
A Variety of Implants and Techniques

- Silastic
- Hydroxylapatite
- Titanium
- Gortex
Arytenoid Adduction Laryngoplasty

- Treatment of the posterior glottis
- Can do under general or local
- Can combine with reinnervation or thyroplasty
Arytenoid Adduction
Medialization Laryngoplasty

Pitfalls

• Implant too high
• Implant too anterior
• Undercorrection
• Overcorrection
• Extrusion
• Persistent posterior gap
 – Failure to do AA
• Gortex may settle
• Fibrous capsule around implant stiffens vocal fold
• Atrophy of TA/LCA muscle
Thyroplasty and Arytenoid Adduction Complications

<table>
<thead>
<tr>
<th>Complications</th>
<th>Thyroplasty I (n=98)</th>
<th>Thyroplasty I + AA (n=96)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient edema</td>
<td>6</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>Hematoma/seroma</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Infection</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Extrusion</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Airway</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Tracheotomy</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Overall</td>
<td>14 (14%)</td>
<td>18 (19%)</td>
<td>32 (16%)</td>
</tr>
</tbody>
</table>

Abraham et al, Laryngoscope 2001
Laryngeal Reinnervation with Ansa Cervicalis Nerve Transfer

• Ansa cervicalis branch – first proposed by Jackson and reported by Frazier – 1924
• Crumley (1980’s-1990’s) – youngest patient 8 years old
• Chhetri et al (1999) combined with AA
• Lorenz et al (2008) large series of 43 patients
• Paniello et al (2011) randomized surgical trial
Ansa-RLN Reinnervation in Adolescents
Perceptual Assessment

Perceptual Ratings by Blinded Listeners

Mean: pre-op 50, post-op 82

Smith, Roy, Stoddard IJPORL 2008
Ansa-RLN Reinnervation in Adolescents – Case Examples

12 yo female w UVP after intubation for TA 1 year earlier
Comparison Studies
Surgery for Vocal Fold Paralysis

- LR vs. IL-Teflon, Crumley et al, 1988
- ML-silastic vs. IL-Teflon, D’Antonio et al, 1995
- IL-Teflon vs. ML-silastic, Dejonckere, 1998
- LR vs. LR+AA, Chhetri et al, 1999
- ML-silastic vs. IL-fat, Shaw & Searl, 2001
- IL/ML vs. ML+AA, Mortensen et al, 2009
- IL-CaHA/MAD vs. ML+/-AA, Vinson et al, 2010
Ansa-Reinnervation vs. Medialization Laryngoplasty

- Controlled, randomized prospective surgical trial involving 9 centers
- 24 patients – 12 in each group
- Under 52 years reinnervation group
 - The best results
 - Untrained listeners rated voices in normal range
 - GRBAS ratings normal
 - Patient-based quality of life ratings normal

Paniello et al, Laryngoscope 2011
Medialization versus reinnervation for unilateral vocal fold paralysis: A multicenter randomized clinical trial
Medialization versus reinnervation for unilateral vocal fold paralysis: A multicenter randomized clinical trial

The Laryngoscope 2011, 121(10):2172-2179
Medialization versus reinnervation for unilateral vocal fold paralysis: A multicenter randomized clinical trial
Medialization versus reinnervation for unilateral vocal fold paralysis: A multicenter randomized clinical trial

The Laryngoscope 2011;121(10); 2172-2179
Paniello Study, 2011
Medialization (ML) vs. Reinnervation (LR)

- Small Study – 24 patients
- however, *prospective randomized (high evidence level 1b)*
- Both groups improved – overall no differences
- However, *LR group under 52 years significantly improved compared with over 52 group*
- *Best overall voice quality – close to normal*
- ML group – no age difference in outcomes
- Maximum phonation time longer in ML group but not well correlated with voice quality
Laryngeal Reinnervation at The University of Utah

- First four cases in 2001, now approaching 100 cases
- Participated in St. Louis multi-center prospective surgical trial 2004-2005
- Pediatric unilateral vocal fold paralysis
 - 13 cases in children under 10 years (eight in the last 12 months)
Reanimation of the Paralyzed Larynx
Restoring Vocal Fold Mobility

- Laryngeal pacing
- Laryngeal “re-wiring” via separate reinnervation of adductors and abductors
Surgical Treatment of Paralytic Dysphonia

Summary

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection Laryngoplasty</td>
<td>Office vs. OR</td>
<td>No perfect injectable implant</td>
</tr>
<tr>
<td></td>
<td>Early results</td>
<td>No perfect injectable implant</td>
</tr>
<tr>
<td></td>
<td>Temporary</td>
<td>Variable resorption</td>
</tr>
<tr>
<td>Medialization Laryngoplasty</td>
<td>Outpatient surgery</td>
<td>Increased surgical risks</td>
</tr>
<tr>
<td></td>
<td>Permanent</td>
<td>Increased surgical risks</td>
</tr>
<tr>
<td></td>
<td>Early results</td>
<td>Doesn’t prevent atrophy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long-term implant effects?</td>
</tr>
<tr>
<td>Laryngeal Reinnervation</td>
<td>Permanent</td>
<td>Delay to improvement</td>
</tr>
<tr>
<td></td>
<td>Potential for best voice</td>
<td>Delay to improvement</td>
</tr>
<tr>
<td></td>
<td>No implant</td>
<td>Delay to improvement</td>
</tr>
</tbody>
</table>