Bilingual Aphasia: What is the role of proficiency and impairment?

ASHA 2012

TERESA GRAY & SWATHI KIRAN

DEPARTMENT OF SPEECH AND LANGUAGE HEARING SCIENCES, BOSTON UNIVERSITY
Disclaimer

The authors have no relevant financial or nonfinancial relationships in the products or services described, reviewed, evaluated or compared in this presentation.
Project Goals

1. Determine patterns of lexical and semantic processing deficits in bilingual aphasia and conceptualize a theoretical framework that accounts for language deficits;
2. Identify language proficiency measures that predict post-stroke language deficits.
Bilingual Language Processing: receptive language

Bilingual Interactive Activation Model + (Dijkstra & van Heuven, 2002)
Bilingual Language Processing: expressive language

Revised Hierarchical Model
(Kroll & Stewart, 1994)
Monolingual Language Processing

(Ellis and Young, 1988)
(Annotated version)
Expression
Spanish

Comprehension
English

Word Recognition
Sp → Eng

Expression
English

Comprehension
Spanish

Word Recognition
Eng → Sp

Semantics
English

Semantics Non-linguistic

Semantics
Spanish

Translation
Sp → Eng

Translation
Eng → Sp

Gray & Kiran (under revision)
19 Spanish-English bilingual aphasic patients (mean age 63.1, SD 17.82); 11 females

- **Bilingual Aphasia Test (BAT):** English and Spanish + Part C
- **Boston Naming Test (BNT):** English and Spanish
- **Pyramids and Palm Trees (PPT):** Picture Version
- **Language Use Questionnaire (Kiran, Pena, Bedore, & Sheng, 2010)**
Language Use Questionnaire Variables

- Lifetime Exposure
- Family Proficiency
- Age of Acquisition
- Education History
- Confidence
- Pre-Stroke Language Ability Rating
- Post-Stroke Language Ability Rating
- Post-Stroke Current Exposure
Theoretical framework that accounts for language deficits

Conceptualize a framework for bilingual language processing

- Foundation based on psycholinguistic models
- Connections validated with patient data
Semantics Non-Linguistics: PPT-Picture Version

Comprehension English/Spanish: average of 3 BAT subtests: Pointing, Semi-Complex Commands, and Complex Commands

Word Recognition (Spanish into English and vice versa): BAT Part C subtest Word Recognition

Expression English/Spanish: BNT

Translation (Spanish into English and vice versa): average of 2 BAT Part C subtests, Word and Sentence Translation

Gray & Kiran (under revision)
Figure 1: Schematic of Bilingual Language Processing. All p-values < 0.05.

Gray & Kiran (under revision)
Figure 1: Schematic of Bilingual Language Processing. All p-values < 0.05.

Comprehension English

Expression Spanish

Word Recognition

Semantics

Translation

Semantics Non-linguistic

Expression English

Translation Sp → Eng

Word Recognition Eng → Sp

Semantics English

Comprehension Spanish

Semantics Spanish

Translation Eng → Sp

Gray & Kiran (under revision)
Identify language proficiency measures that predict post-stroke language deficits

1. Determine language metrics

2. Decide LUQ metrics
Organization of Data Variables

- **Comprehension English/Spanish**
 Average of 3 BAT subtests: Pointing, Semi-Complex Commands, and Complex Commands

- **Semantics English/Spanish**
 Average of 6 BAT subtests: Semantic Categories, Synonyms, Antonyms I & II, Semantic Acceptability, and Semantic Opposites

- **Expression English/Spanish**
 BNT

- **Word Recognition (Spanish into English and vice versa)**
 BAT Part C subtest Word Recognition
Dependent Measures:
BAT Comprehension, BAT Semantics, BNT and BAT-Word Recognition
(Categorical Variable: Language)
Identify language proficiency measures that predict post-stroke language deficits

- Confidence
- Current Exposure
- Pre-Stroke LAR

- BAT Comprehension
 $(R^2 = .499, F(3, 22) = 7.33, p \leq 0.01)$

- BAT Semantics
 $(R^2 = .33, F(3, 21) = 3.57, p \leq 0.05)$

- BNT
 $(R^2 = .25, F(3, 22) = 2.52, p = 0.08)$

- BAT Word Recognition
Identify language proficiency measures that predict post-stroke language deficits

Pre-Stroke LAR

- $B = 0.55, t = 2.33, p = 0.02$ → BAT Comprehension
- $B = 0.65, t = 2.43, p = 0.023$ → BAT Semantics
- $B = 0.58, t = 2.01, p = 0.058$ → BNT
- $B = 0.47, t = 1.64, p = 0.11$ → BAT Word Recognition
1. The benefit of using a framework to interpret patient data:
 - Where is language breaking down?

2. Our framework can be used with language combinations other than Spanish-English
 - Our framework is meant to explain a diverse set of test results.

3. The importance of pre- and post-morbid language use data to interpret bilingual aphasic data:
 - Language impairment vs pre-morbid proficiency
Figure 1: Schematic of Bilingual Language Processing. All p-values < 0.05.

Gray & Kiran (under revision)
Future Directions

1. Expand our sample size to include more patients.
2. Evaluate the data of other language combinations
3. Use pre-stroke LAR as a means to identify impairment patterns within our patients.
THANK YOU

ACKNOWLEDGMENTS: OUR PATIENTS AND THEIR FAMILIES; MEMBERS OF THE BU APHASIA RESEARCH LABORATORY

CONTACT INFORMATION:
TERESA GRAY: TGRAY@BU.EDU
References

Results: Are there distinct subgroups into which patients with bilingual aphasia can be categorized?

Determine the relationship between language proficiency and post-stroke language deficits.

Pre-Stroke Language Proficiency:
- pre-stroke LAR

Post-Stroke Comprehension/single word naming:
- BAT Comprehension (average of subtests Pointing, Semi-Complex and Complex Commands)
- BNT

We established three subgroups of post-stroke language impairment presentations among our patients (N=17).
Results: Are there distinct subgroups into which patients with bilingual aphasia can be categorized? (N=17)

Group 1: Parallel (n=5).
Results: Are there distinct subgroups into which patients with bilingual aphasia can be categorized? (N=17)

Group 2: Parallel (n = 4).
Results: Are there distinct subgroups into which patients with bilingual aphasia can be categorized? (N=17)

Group 3: Differential (n=8)