Aerodynamic Assessment of Velopharyngeal Function: A Primer for Clinicians

David J. Zajac, PhD, CCC-SLP
ASHA Fellow
Director SLP Craniofacial Center
University of North Carolina at Chapel Hill

ASHA, November 16, 2012
Session # 1358
Disclosure

• The presenter has no financial or non-financial interest relevant to the presentation.
Seminar Topics

• Justification for aerodynamics
• Review of low tech methods
• Fundamental principles of the pressure-flow technique
• Instrumentation & clinical protocols
• Normal VP function and dysfunction
• Modifications for children and toddlers
Why Use Aerodynamics?

• A comprehensive evaluation of VP function must include both
 – Perceptual techniques
 – Instrumental techniques
(Peterson-Falzone et al., 2001)
Why Use Aerodynamics?

• While perceptual assessment is the “gold standard”
 – The ear can be fooled (e.g., McGurk Effect)
 • Hypernasality can be masked by hoarseness
 • Nasal air emission can be masked by articulatory distortions
 – Clinicians may be biased
 • Expect good outcomes post secondary procedures?
 – Aerodynamics helps to “keep us honest”
Why Aerodynamics?

• Advantages of Pressure-Flow as an instrumental technique
 – Non-Invasive
 – Relatively inexpensive
 • > $ than Nasometry but < $ than endoscopy
 – Provides objective information
 – Can be used with children as young as 2 years of age (but typically 5 to 6)
 – No physician oversight required
Why Aerodynamics?

• **50%** of traditional VPI speech characteristics are **aerodynamic** by definition
 – Nasal air emission
 – Reduced oral air pressure (Po)
 – Hypernasality
 – Compensatory articulations

• Hypernasality and compensatory articulations also may have aerodynamic components
Why Aerodynamics?

• Velopharyneal (VP) port essentially functions as an aeromechanical valve to separate the oral and nasal cavities during speech production.

• Given the primary goal of initial and secondary palatal surgeries is to restore structural and aeromechanical integrity of the VP mechanism, aerodynamics should be a primary procedure to assess surgical outcomes.
Why Aerodynamics?

• Disadvantages of Pressure-Flow
 – Relatively expensive (> Nasometry)
 – Techniques relatively complicated
 • Calibration of pneumotachograph (flowmeter)
 • Calibration of pressure transducers
 • Orifice area equation
 – Few “commercial” vendors
 • Microtronics, Inc. (PERCI-SARS)
 • Glottal Enterprises, Inc. (Nasal Emission System)
Low Tech Assessment

- Obligatory symptoms of VPI
 - Hypernasality
 - Reduced oral air pressure (Po)
 - Nasal air emission
 - Visible – laminar airflow (no turbulence)
 - Audible – turbulent airflow (sound of forceful exhalation; large VP gap – nose produces turbulence)
 - Audible with Rustle – raspberry-like sound due to a small VP gap (tissue vibration)
Mirror Testing
Listening Tube
(from Kummer)
See-Scape
(from Kummer)
Low Tech Assessment

• Caveats
 – Inadequate temporal resolution to distinguish
 • Utterance onset and offset nasal airflow (affected by speaking rate)
 • Nasal airflow due to velar bounce
 • Nasal airflow in nasal-plosive phonetic contexts (e.g., “jumping”, “hamper”)
Low Tech Assessment

• Caveats
 – See-Scape
 “I always thought that it was good to make the float rise. I always tried to make it rise.”

Adult patient commenting on the See-Scape when tested as a child
Pressure-Flow Technique: Fundamental Principles

- Developed by Warren and colleagues (1960s)
- Method to calculate the minimum cross-sectional area of VP orifice
- Based upon Bernoulli’s principle (i.e., hydrokinetics)
Pressure-Flow Technique: Fundamental Principles

• 3 Basic Elements of Standard Approach
 – Vocal tract pressure measurements
 • Oral (Po)
 • Nasal (Pn)
 (to derive differential pressure)
 – Nasal airflow measurement (Vn)
 – VP area calculation
Flow Through an Orifice
Pressure-Flow Technique: Historical Development

- Warren & DuBois (1964)
 - Plastic model of upper vocal tract
 - Used thin plates with varying cross-sectional areas from 2.4 to 120.4 mm2 to model VP port
 - Determined need for correction factor, $k=0.65$
 - Dimensionless value used to correct for turbulent flow through orifice
Sharp-edged plates create turbulence and pressure loss, k corrects for loss.
Hydrokinetic Orifice Equation

\[\text{VP Area (mm}^2\text{)} = \left(\frac{V_n}{\sqrt{\Delta P}} \right) (.11) \]

Where:

- \(V_n \) is nasal airflow in mL/s
- \(\Delta P \) is oral-nasal air pressure in cm H\(_2\)O
- .11 is constant (includes k factor .65, pressure unit conversions, and density of air)
Pressure-Flow Technique: Historical Development

• Warren & DuBois (1964)
 – Accuracy of model tests?
 – Error between known and calculated VP orifice areas was no greater than \(\approx 10\% \)
 • Relatively small errors for smaller orifices
 • Relatively large errors for larger orifices
Pressure-Flow Technique: Historical Development

• Warren & DuBois (1964)
 - Initial clinical application
 • Tube inserted into nose for nasal airflow
 • Balloon-tipped catheter inserted through nose into oropharynx to detect Po
 – Little interference from balloon during speech
 – But, differential pressure included both VP and nasal cavity components; therefore, correction needed
A

Cork to Plug Nostril and Secure Tubing

To Flowmeter

To Pressure Transducer

B

Cork

Posterior Pharyngeal Wall

Soft Palate

Balloon in Pharynx

Tongue
Pressure-Flow Technique: Historical Development

• Warren (1964)
 – Modified clinical application
 • Open-ended catheter held in mouth (Po)
 • 2nd open-ended catheter inserted into nose (Pn)
 – Allowed direct determination of differential oral-nasal pressure across VP port
 – But, limited speech samples to bilabial consonants
Pressure-Flow Technique: Accuracy of VP Area Estimates

• Zajac and Yates (1991)
 – Inserted 18.1 mm² tube into nasopharynx of non-cleft speaker
 – Recorded pressure and flow during /pa/
 – Calculated “VP” area (used k=.67)
 – Obtained ≈7% error between known and calculated areas
Pressure-Flow Technique: Accuracy of VP Area Estimates

- Accuracy depends upon value of k
- Yates et al. (1990)
 - Questioned value of $k = 0.65$
 - k varies as function of inlet geometry of orifice
 - Rounded inlets may be more representative of human VP port, if so, then $k = 0.97$
Yates et al: Rounded inlet orifices create less turbulence and pressure loss, therefore, k value may approach .97

<table>
<thead>
<tr>
<th>Orifice Type</th>
<th>Shape</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharp Edge or Thin Plate</td>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td>Rounded Inlet</td>
<td></td>
<td>0.97</td>
</tr>
<tr>
<td>Reentrant Sharp Edge</td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>Reentrant Sharp Edge</td>
<td></td>
<td>0.72 – 0.80</td>
</tr>
<tr>
<td>Short Tube, Sharp Corner</td>
<td></td>
<td>0.50, 0.67, 0.79</td>
</tr>
</tbody>
</table>
Pressure-Flow Technique: Accuracy of VP Area Estimates

• Effect of $k = .65$ for human speakers
 • May over estimate VP area up to 30% compared to $k = .97$
 • Why not change k?
 • Geometry not known for a given speaker
 • Normative data collected with $k = .65$

• VP area estimates should be considered as relative, not absolute
Pressure-Flow Technique: Instrumentation

- Two air pressure transducers
 - Bidirectional (positive & negative pressures)
 - Pressure range of at least ± 15 inches water (≈ ± 38 cm H₂O)
 - Built-in signal amplifier
- Heated pneumotachometer (flow meter)
 - Bidirectional pressure transducer (± 0.5 or 1.0 inch water pressure range)
Pressure-Flow Technique: Instrumentation

- A/D converter
- Signal processing software
- Additional equipment for calibration
 - Manometer (either fluid-filled or digital)
 - Rotameter or large volume syringe
This PERCI-SAR system connected for VP measurement using MTST-3 transducers.
Equipment
Questions?
Clinical Protocol

Standard Pressure-Flow Technique:

1) Requires patency of both nostrils
2) Po detected behind lips (bilabials)
3) Pn detected by occluding one nostril
 • Creates stagnation pressure that is continuous with downstream VP port
 • Eliminates resistance of nasal cavity
4) Nasal airflow detected by flow tube
Standard Pressure-Flow Technique
Pressure Measurement
Location is Everything!

• Vocal tract pressures can be easy or difficult to obtain

• Oral air pressure (Po)
 – Catheter must be behind structure of interest
 – Relatively easy for bilabial sounds
 – Somewhat easy for alveolar sounds
 – Relatively difficult for velar sounds
 – Orientation of catheter not critical for stops
Pressure Measurement

• Nasal air pressure (Pn)
 – Catheter must be downstream of VP orifice
 – Inserted into nostril via
 • Cork
 • Foam plug
 • Nasal olive
Nasal Airflow Measurement

- Requires
 - Pneumotachograph (flow meter)
 - Nasal flow tube
 - Should not use nasal olive

- Flow from most patent nostril
Speech Samples
www.unc.edu/~dzajac/UNC_Pressure_Flow_Lab.htm

• Zajac (2000)
 – 223 non-cleft speakers
 – Ages 6 to 37 years

• Speech samples
 – Syllables, words, & sentences
 – Produced 5 times
 • Habitual loudness and rate
 • Single breath group
Speech Samples

• /pi/
• /pa/
• /si/ *
• /mi/
• /hamper/
• “peep into the hamper” *

* Not reported by Zajac (2000)
/pi/ x5: Non-Cleft Speaker

Oral Pressure

Nasal Airflow

VP closure

Audio
/pa/ x5: Non-Cleft Speaker

Oral Pressure

Nasal Airflow

VP closure

Audio
/si/ x5: Non-Cleft Speaker

Oral Pressure

Nasal Airflow

Audio

VP closure
"hamper" x5: Non-Cleft Speaker

- Oral Pressure
- Nasal Airflow
- Audio

Graphs showing time in seconds (s) on the x-axis and various units on the y-axis.
"peep into the hamper" x3: Non-Cleft Speaker

Oral Pressure

Nasal Airflow

Audio
Hamper (adult): Normal VP Function

Oral Pressure

Nasal Airflow

cm H₂O

ml/s

time (s)
Normal VP Function
(no cleft)

Stop Consonants

- Po: 3 to 7-8 cm H₂O
 - Children > adults
- NO nasal airflow and complete VP closure, but beware of:
 - Onset/offset flow
 - Velar bounce
 - Tonsillectomy/Adenoidectomy
Normal VP Function
(no cleft)

Nasal Consonants

– Po: < 1 to 2 cm H$_2$O
– Nasal airflow: 70 to 130 mL/s
 • Varies with age and phonetic context
– VP area: 20 to 40 mm2
 • Varies with age and phonetic context
/pi/: Cleft Speaker - Normal Closure

Oral Pressure

Nasal Airflow

cm H₂O

ml/s

(time (s))
/p/: Cleft Speaker - Marginal Closure

Oral Pressure

Nasal Airflow
/pi/: 4 yr-old CLP - Inadequate VP Closure

Oral Pressure

Nasal Pressure

Nasal Airflow
Hamper: Inadequate VP Function

Oral Pressure

Nasal Airflow

cm H₂O

ml/s

/time (s)/
Categories of VP Function
Warren et al. (1989)

- VP Area $< 5.0 \text{ mm}^2$
 - Adequate VP Closure
- VP Area ≥ 5.0 but $\leq 9.9 \text{ mm}^2$
 - Borderline Adequate/Borderline Inadequate
- VP Area ≥ 10.0 but $\leq 19.9 \text{ mm}^2$
 - Borderline Inadequate
- VP Area $\geq 20.0 \text{ mm}^2$
 - Inadequate VP Closure
Categories of VP Function
(Phonetic context of /p/ in CV syllables)

- VP Area $\leq 1.0 \text{ mm}^2$
 - Normal (complete) VP Closure
- VP Area ≥ 1.1 but $\leq 4.9 \text{ mm}^2$
 - Adequate
- VP Area ≥ 5.0 but $\leq 9.9 \text{ mm}^2$
 - Borderline Adequate/Inadequate (marginal)
- VP Area $\geq 10.0 \text{ mm}^2$
 - Inadequate
Categories of VP Function Related to Perceptual Symptoms

- Adequate (<5mm²): Closure is adequate to generate usable Po, but
 - Inconsistent nasal rustle
 - Perhaps mild nasality
- Marginal (<10mm²)
 - May have audible nasal emission
 - May have mild to moderate nasality
- Inadequate (>10mm²)
 - Audible nasal emission
 - Moderate to severe nasality
 - >20mm² - reduced Po
Temporal Measures

• Time that VP port is open may be as important as size of opening (Warren et al., 1993)

• High correlations reported between VP closing duration in nasal-plosive sequences and perceived nasality (Dotevall et al., 2002)
VP Closing Duration

• Duration of Vn declination in “hamper”
 – Beginning: peak Vn
 – End: point where Vn drops to 5% of baseline
 • Controls for VPI (i.e., flow never reaches zero)
• “Norms” reported by Dotevall et al. (2002)
 – Approximately 50 ms
• “Norms” reported by Zajac & Mayo (1996)
 – Approximately 80 ms (adults)
 – Used 10 mLs criterion
VP Closing Time Caveats

• Need consensus on procedures
• May need to **normalize** VP closing time to word duration
 – Controls for speaking rate
9 year-old girl, repaired CP: Mild nasality, marginal VP closure (adenoid involution?)
Same girl, 3rd production – moderate nasality, inadequate VP closure (fatigue?)
15 year-old girl, LCLP, post maxillary advancement: Grossly inadequate VP closure
Same girl, “hamper”: Complete overlap of oral pressure and nasal airflow
20 year-old female, RCLP: Severe nasality, co-articulated glottal stops in “hamper”
5.6 year-old boy, VPI (no cleft): Moderate nasality, overlap of Po and Vn in “hamper”
Same boy: Post pharyngeal flap surgery
/hamper/: 10 yr-old post flap - Obstruction

Oral Pressure

Nasal Pressure

Nasal Airflow
Questions?
Modifications for Young Children
Differential Pressure Determination

• Requires
 – Oral catheter ("See mouth talk")
 – Nasal plug/olive ("See nose talk")

• Visual feedback (i.e., game)

• **No** nasal flow tube (no area calculation)
2/24/2005 pi (x5) By: LEB 0.000 sq cm

Oral Press

Nasal Press

Time Axis

Arianna 141-27-13-8 Visit: 01 DX: 1 4Y 9M

no nasal flow
Categories of VP Function
(Phonetic context of /mp/, Warren et al., 1995)

• Diff. Pressure ≥ 3.0 cm H₂O
 ➢ Adequate VP Closure

• Diff. Pressure ≤ 2.9 but ≥ 1.0 cm H₂O
 ➢ Borderline or Marginal VP Closure

• Diff. Pressure < 1.0 cm H₂O
 ➢ Inadequate VP Closure
Modifications for Young Children

Nasal Mask Approach

• Requires
 – Nasal mask to obtain airflow and downstream pressure
 – Oral catheter to detect upstream pressure

• Avoids insertion of nasal plugs and tubes

• Useful when child
 – Has bilateral cleft lip/palate
 – Has unilateral nasal obstruction
 – Is fearful of nasal plug/tube
Modifications for Young Children
Nasal Mask Approach

• **Permits** calculation of VP area but
• Requires differential pressure **correction**
 – Differential oral-mask pressure includes VP pressure drop **and** nasal pressure drop (i.e., nasal resistance)
 – Must **subtract** nasal pressure drop to obtain true (larger) VP area
 – Nasal pressure drop obtained during breathing
Modifications for Young Children

Nasal Mask Only

- Nasal mask to obtain airflow
- No oral catheter
- Microphone to record audio
- Useful when child
 - Has lip incompetency
 - Fearful of oral catheter
Categories of VP Function
(Phonetic context of /p/ in CV syllables)

- Nasal Flow ≤ 20 or 30 mL/s
 - Normal (airtight) VP Closure
 - Includes “velar bounce”
- Nasal Flow ≥ 30 but ≤ 150 mL/s
 - Borderline or Marginal VP Closure
 - Influenced by respiratory effort/nasal resistance
- Nasal Flow > 150 mL/s
 - Inadequate VP Closure
Nasal Ram Pressure
aka Pressure-Flow Lite
Nasal Ram Pressure

VP status of stop consonants coded relative to NRP:

- Open VP port – Positive NRP
- Closed VP port – Atmospheric NRP
- No estimate of VP area
Male CLP (CA=21 mos.) - VP Closure

Breath Group
/t/ /p/ /t/

Audio (volts)

stop play toy

Time (s)
Male CLP (CA=22 mos.) - No VP Closure

Breath Group

/b/

ball

Audio (volts)

Time (s)
<table>
<thead>
<tr>
<th>Subject</th>
<th>Cleft Type</th>
<th>Sex</th>
<th>Age (mos.)</th>
<th># Stops</th>
<th>% Stops Closed</th>
<th>% Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CP</td>
<td>F</td>
<td>23</td>
<td>28</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CLP</td>
<td>M</td>
<td>25</td>
<td>21</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CP</td>
<td>M</td>
<td>23</td>
<td>19</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CP</td>
<td>M</td>
<td>21</td>
<td>16</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CLP</td>
<td>M</td>
<td>21</td>
<td>12</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CLP</td>
<td>F</td>
<td>26</td>
<td>7</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CLP</td>
<td>M</td>
<td>24</td>
<td>3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CP</td>
<td>F</td>
<td>24</td>
<td>2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>CLP</td>
<td>F</td>
<td>22</td>
<td>53</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CLP</td>
<td>M</td>
<td>22</td>
<td>22</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>CLP</td>
<td>M</td>
<td>21</td>
<td>14</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CLP</td>
<td>M</td>
<td>22</td>
<td>10</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>CP</td>
<td>F</td>
<td>23</td>
<td>13</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>CP</td>
<td>F</td>
<td>21</td>
<td>27</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>CLP</td>
<td>M</td>
<td>22</td>
<td>2</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>CLP</td>
<td>M</td>
<td>28</td>
<td>8</td>
<td>0</td>
<td>18%</td>
</tr>
<tr>
<td>17</td>
<td>CLP</td>
<td>M</td>
<td>22</td>
<td>3</td>
<td>0</td>
<td>18%</td>
</tr>
</tbody>
</table>
Pressure-Flow: Advantages

• Provides aerodynamic “image” of VP port
• Non-invasive
• Can be used with young children
• Objective data -- good norms
• Provides multiple information
 – Oral air pressure
 – Nasal air pressure
 – Nasal airflow
 – Estimates of VP area
Pressure-Flow: Disadvantages

• Technical
 - Calibration
 - Easy to make errors

• VP area is *relative* (due to k factor)

• May not correlate highly with perceived hypernasality on vowels
Thank-you!
&
Questions?