Effortful Pitch Glide: An Exercise for Potential Swallow Rehabilitation Evaluated by Dynamic MRI

Keri Vasquez Miloro, MS, CCC-SLP, BRS-S
William G. Pearson, Jr. PhD
Susan Langmore, PhD, CCC-SLP, BRS-S
Disclosures

Keri Vasquez Miloro:
No relevant financial or nonfinancial relationships to disclose

William Pearson: Training grant No. F31DC011705 from the National Institute on Deafness and Other Communication Disorders

Susan Langmore: NIH-NCI R01-CA120950-05
Board Recognized Specialist in Swallowing and Swallowing Disorders (BRS-S)

Do you have advanced knowledge, skills and expertise in dysphagia?

Would you like to be recognized as an expert in the field and join a select group of clinicians dedicated to patients with dysphagia?

Consider becoming a Board Recognized Specialist in Swallowing and Swallowing Disorders
Benefits of Obtaining BRS-S

- Recognition of advanced skills to consumers, colleagues, and healthcare practitioners
- Facilitate career advancement
- Marketing of clinical services
- Expand referral sources
- **ADVANCED** Continuing Education programs
- Connect with fellow Specialists
- Clinical and Academic/Administrative tracks available

For more information on Specialty Recognition, Mentorship and Continuing Education programs, go to www.swallowingdisorders.org
Presentation Objectives

1. Principles of exercise training

2. EBP review of current swallow therapy
 - Application of training principles, targeted kinematics & comprehensibility

3. Overview of study examining the EPG
Training Principles

1. Specificity
 - Muscular response – action or contraction
 - Swallow therapies – kinematic specificity

2. Overload
 - Intensity, freq, duration (reps, sets, rest)
Training Principles

Goal - Adaptation
- Muscle response
 - Fiber shifts and hypertrophy (Burkhead et al 2007)

- Maintenance/Detraining
 - Loss of adaptations gained
Other Principles

Transference

“the ability of plasticity within one set of neural circuits to promote concurrent or subsequent plasticity” (Kleim & Jones, 2008, p. S232)

- Behavioral plasticity (Robbins et al, 2008)
Rehabilitative Swallow Therapies

Goal – Improve physiology
Force, speed and timing

Exercise program to promote LT effects
Two types of exercise

1. Swallow maneuvers: “task-specific” exercises

2. Non-swallow (non-specific) exercises

Aim: long-term – make the swallow stronger, quicker, more coordinated
Part 1: “Swallow” Exercises

1. Mendelsohn maneuver
2. Effortful swallow
3. Supraglottic swallow maneuver
4. Tongue-hold
5. MDTP
Mendelsohn Maneuver (MM)

↑ laryngeal elevation, greater amplitude during swallow (Kahrilas et al 1991)

- Sig. improved superior and ant hyoid post 2 weeks of MM (McCullough et al 2012)
 - sEMG

- **Application of training principles**: specificity, overload

- **Kinematics**: hyolaryngeal elevation, anterior hyoid

- **Comprehensibility**: Difficult

Based on clinical experience
Effortful Swallow (ES)

- **Principle:** BOT – PPW

- Lengthened laryngeal closure, improved hyoid excursion, UES opening duration, higher oral pressures (Hind et al 2001)

- ↑ in submental activity vs swallow (Wheeler – Hegland et al 2008)

- Delayed pharyngeal & UES events *but > pharyngeal pressure and UES relaxation* (Hiss & Huckabee, 2005)

- Increases esophageal amplitude (Nekl et al 2012)

- **Application to training principles:** specificity, overload

- **Kinematics:** Pharyngeal contraction, airway closure, UES

- **Comprehensibility:** Difficult, often taught w/ biofeedback
Cortical Activity

ES and MM elicited widespread neural network of activation in both hemispheres

- Elicited more response in regions associated related to swallowing – suggesting enhanced cortical activation (Peck et al 2010)
SGS

- VF closure before and during swallow (Martin et al. 1993)
- Increased posterior and superior excursion of hyoid w/ longer displacement vs swallow (Kasahara et al. 2009)

- **Application to training principles:** specificity, overload
- **Kinematics:** Laryngeal closure, hyoid excursion
- **Comprehensibility:** Difficult
Tongue-Hold

- Significant increase in anterior bulging of PPW (Fujiu et al 1996)
 - Immediate effects

- No difference in pharyngeal pressures between tongue-hold and saliva swallows (Umeki et al 2009)

- Healthy subjects: RCT x’s 4 weeks
 - No change in swallow (hyolaryngeal ex, pharyngeal constriction or ant movement of PPW) (Oh et al 2012)

- **Application to training principles:** specificity, overload
- **Kinematics:** pharyngeal bolus transport, BOT
- **Comprehensibility:** Difficult
McNeill Dysphagia Tx Protocol (MDTP)

“Swallow hard and fast” - follows a dietary hierarchy with advancing steps of altered bolus volume (load) and consistency

- Increased laryngeal and hyoid elevation, lingual-palatal pressures, FOIS, oral and pharyngeal temporal events (Crary et al 2012, Lan et al 2012)
- Pilot studies/small sample size

- Application to training principles: specificity, overload
- Kinematics: laryngeal and hyoid elevation
- Comprehensibility: Difficult (MMSE > 23)
Part 2: Non-swallow exercises

1. Shaker
2. Tongue strengthening
3. LSVT
4. EMST

Falsetto

Pharyngeal squeeze maneuver

more on these later.....
Shaker Exercise

Strengthens suprahyoids for forward movement; Reduces post-swallow pyriform sinus residue d/t decreased UES excursion

- **Significant improvement** - UES opening, anterior laryngeal excursion and elimination of aspiration post swallow

 (Shaker et al 2002)

- **Application of training principles:** Overload, transference
- **Kinematics:** Anterior laryngeal movement
- **Comprehensibility:** easy BUT ↓ tx compliance
Shaker Exercise

Elderly subjects - Increase in frequency range and intensity (Easterling 2008)

Suggestive of transference
Tongue Strengthening

Isometric lingual resistance exercise using the Iowa Oral Performance Instrument (IOPI)

- ↓ residue, pen/asp, oral transit duration, lengthened airway protection and improved QOL; increased lingual muscle mass (Robbins et al, 2007)

Improved tongue strength and swallow function; improved diet levels (Yeates et al 2008)
Tongue Strengthening (cont)

Tongue depressors

- Young normals - no differences in strength between depressors versus IOPI (Lazarus et al, 2003)

- Healthy adults - *increased* lingual strength
 - elevation, lateralization and protrusion

- Detraining effects - lingual strength *decreased* 2-4 weeks after training (Clark et al, 2009)
Tongue Strengthening (cont)

- **Application of training principles:** Overload, transference
- **Kinematics:** bolus flow, airway closure
- **Comprehensibility:** easy – difficult
Lee Silverman Voice Tx (LSVT)

- Improve speech intelligibility in PD
 - MPD, F0, fxnl phrases, speech tasks;
 - Talk and think “LOUD!” (Ramig et al 1995)

- Improved lingual motility, quicker swallow, oropharyngeal TT, < vall residue
 - No change in penetration (El Sharkawi et al 2002)
 - Pilot study

- **Application of training principles:** Overload, transference
- **Kinematics:** oral transit
- **Comprehensibility:** easy
Expiratory Muscle Strength Training (EMST)

- Respiratory strengthening - resistive loading with a pressure threshold device
 - Improves cough, speech, breathing and swallow function (Sapienza et al 2006, Troche et al 2010)
 - Increased activation & higher amplitude of submentals vs. swallow (Wheeler et al 2007)
EMST

- Significant ↓ PA scores in PD post 4 weeks (Pitts et al 2009)

- RCT w/ PD – EMST vs. sham exercise
 - ↓ PA scores and ↑ hyolaryngeal fxn (Troche et al 2010)
 - MMSE ≥ 24

- Detraining – Small loss of strength post 8 weeks but significantly above baseline levels (Baker et al 2005).
EMST (cont.)

- Integration and coordination of several related muscle areas
 - neuroplastic changes (Sapienza & Wheeler 2006)

- **Application of training principles:**
 - Overload, transference

- **Kinematics:** Hyolaryngeal, laryngeal closure

- **Comprehensibility:** easy-difficult BUT need device
Effortful Pitch Glide (EPG)
What is the Effortful Pitch Glide (EPG)?

Background
What is the Effortful Pitch Glide (EPG)?

New exercise
- Easy
- Recruits muscles used in swallowing
 - Kinematic specificity
What is the EPG?

1. Falsetto

- Pitch elevation
 - Max F_0 and perceptual - significantly predicted PAS scores
 - Lower max F_0 - significantly higher mean residue scores (Malandraki et al 2011)
What happens during pitch elevation?

- MRI
 - Rising of hyoid and larynx, hyolaryngeal approximation (*Miller et al 2011*)
What is the EPG (continued)?

2. Pharyngeal squeeze maneuver (PSM)

- Evaluation of pharyngeal constrictors (*Bastian 1993*)
- PSM validated when compared with the pharyngeal constrictor ratio (*Fuller et al 2009*)
What is the EPG?

Pitch glide + PSM = EPG
Video of EPG
Aims

#1: Describe the EPG

#2: Test for swallowing specificity using two-planar dynamic dynamic MRI
Methods

- 11 healthy, young subjects
 - mean 25.4 years (range 22- 30 yrs)
 - 6 M, 5 F

- Used laryngoscopic exam to describe EPG (Aim #1)
 - Instructions:
 1. /i/ modal pitch - highest pitch
 2. Forceful “ee” sound at highest pitch
Methods (continued)

- Used two-planar T1 weighted dynamic MRI at 8.3 frames per second alternating coronal and sagittal planes to measure kinematic variables to test specificity (Aim #2)
 - 9 anatomical landmark measurements
 - Image J software
Data Analysis

- Paired two-tailed t-test with Bonferroni Correction

- Inter-reliability
Effortful Pitch Glide

Before EPG

EPG -maximum
Aim 2:

Does the EPG elicit similar kinematic movements as swallowing?

1. EPG>SW
2. EPG≈SW
3. EPG<SW

- Kinematic variables include:
 - Hyoid Movement
 - Hyolaryngeal Approximation
 - Laryngeal Elevation (*Superior hyoid & Posterior thyroid*)
 - Pharyngeal Shortening
 - Pharyngeal Wall Medialization
Kinematic Variables of Interest

Hyoid Movement – Anterior
Kinematic Variables of Interest

Hyoid Movement – Superior
Kinematic Variables of Interest

Hyolaryngeal Approximation
Kinematic Variables of Interest

Laryngeal Elevation via Posterior Thyroid
Kinematic Variables of Interest

Pharyngeal Shortening
Kinematic Variables of Interest

Pharyngeal Wall Medialization
EPG compared with the swallow – midsagittal

Swallow at max

EPG at max
EPG compared with the swallow – Coronal plane of lateral pharyngeal walls

Swallow at max

EPG at max
Results

<table>
<thead>
<tr>
<th></th>
<th>EPG Rest to Max (cm)</th>
<th>Swallow Rest to Max (cm)</th>
<th>p values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(95% Confidence Intervals)</td>
<td>(95% confidence intervals)</td>
<td></td>
</tr>
<tr>
<td>Anterior Hyoid</td>
<td>1.02±0.56 (0.69, 1.35)</td>
<td>1.02±0.34 (0.82, 1.22)</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Anterior Hyoid

![Anterior Hyoid Graph]

- EPG
- Swallow
Results

<table>
<thead>
<tr>
<th>Super Hyoid Movement</th>
<th>EPG Rest to Max (cm) Mean ± SD (95% Confidence Intervals)</th>
<th>Swallow Rest to Max (cm) Mean ± SD (95% confidence intervals)</th>
<th>p values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superior Hyoid</td>
<td>0.49±0.68 (0.09, 0.89)</td>
<td>1.37±0.73 (0.94, 1.8)</td>
<td>0.00*</td>
</tr>
</tbody>
</table>

Superior Hyoid

![Graph showing EPG and Swallow Rest to Max (cm) comparison](image-url)
Results

<table>
<thead>
<tr>
<th></th>
<th>EPG Rest to Max (cm)</th>
<th>Swallow Rest to Max (cm)</th>
<th>p values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyolaryngeal</td>
<td>0.27±0.28</td>
<td>-0.17±0.5</td>
<td>0.02</td>
</tr>
<tr>
<td>Approximation (cm)</td>
<td>(0.11, 0.43)</td>
<td>(-0.47, 0.13)</td>
<td></td>
</tr>
</tbody>
</table>

Hyolaryngeal Approximation

![Graph showing Hyolaryngeal Approximation](image)
Results

<table>
<thead>
<tr>
<th>Laryngeal Elevation via Posterior Thyroid</th>
<th>EPG Rest to Max (cm)</th>
<th>Swallow Rest to Max (cm)</th>
<th>p values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD (95% CI)</td>
<td>Mean ± SD (95% CI)</td>
<td></td>
</tr>
<tr>
<td>Laryngeal Elevation(by Posterior Thyroid)</td>
<td>1.4±0.65 (1.02, 1.78)</td>
<td>1.61±0.64 (1.23, 1.99)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Bar Chart

Laryngeal Elevation via Posterior Thyroid

- **EPG**
- **Swallow**
Results

<table>
<thead>
<tr>
<th></th>
<th>EPG Rest to Max (cm)</th>
<th>Swallow Rest to Max (cm)</th>
<th>p values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD (95% CI)</td>
<td>Mean ± SD (95% CI)</td>
<td></td>
</tr>
<tr>
<td>Pharyngeal Shortening</td>
<td>1.3±0.69 (0.9, 1.7)</td>
<td>0.96±0.67 (0.56, 1.36)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Pharyngeal Shortening

![Pharyngeal Shortening Graph](image)
Results

<table>
<thead>
<tr>
<th></th>
<th>EPG Rest to Max (cm)</th>
<th>Swallow Rest to Max (cm)</th>
<th>p values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td></td>
</tr>
<tr>
<td>(95% Confidence Intervals)</td>
<td></td>
<td>(95% confidence intervals)</td>
<td></td>
</tr>
<tr>
<td>Lateral Pharyngeal Wall Medialization</td>
<td>1.81±0.68 (1.41, 2.21)</td>
<td>2.29±0.51 (1.99, 2.59)</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Graph: Lateral Pharyngeal Wall

- **EPG**
- **Swallow**
Kinematic Variables (EPG vs Swallow)

Inter-rater reliability $r = .76-.97$
What does this tell us about muscle activity?
All muscles except thyrohyoid and ant diagstric achieved sig. effect size changes

Muscle overload with EPG – mylohyoid (hyoid elevation), palatopharyngeus and stylopharyngeus (posterior laryngeal elevation, pharyngeal shortening)

(Pearson, W et al 2012)
How do we interpret this?

- EPG demonstrates kinematic specificity to swallowing:
 - Anterior Hyoid Movement
 - Hyolaryngeal Approximation
 - Laryngeal Elevation
 - Pharyngeal Shortening
 - Pharyngeal Wall Medialization
How does the EPG compare to other therapies?

Application of training principles:
Overload, transference

Kinematics:
Anterior hyoid, hyolaryngeal approximation, laryngeal elevation, pharyngeal shortening and pharyngeal wall approximation

Comprehensibility:
Easy
Limitations

- MRI
- Can this exercise be detrimental?
- No acoustic or perceptual measurements
- Young, healthy subjects – small sample
In Conclusion

We have introduced the Effortful Pitch Glide (EPG), a non swallow exercise, that may effectively resemble certain swallowing kinematics including:

– Anterior Hyoid Movement
– Hyolaryngeal Approximation
– Laryngeal Elevation
– Pharyngeal Shortening
– Pharyngeal Wall Medialization
Thank you for your attention!

Kav21@bu.edu
References

References

References

