In Vivo Oxygen Consumption and Hemoglobin Levels in Human Thyroarytenoid Muscle

Cari M. Tellis, Ph.D.,
Clark A. Rosen, M.D., FACS
Thomas L. Carroll, M.D.
Michael Fierro, BSEE
James J. Sciote, DDS, Ph.D.
Background

- Currently, there is no non-invasive, measurable method to determine if a symptom matches muscle function.

- **Visible light spectroscopy** (VLS) is the technology behind the FDA approved TSTAT® device.
Objective

Novel, pilot study was to determine if VLS is a reliable and valid method of measuring total hemoglobin (tHb) and oxygen saturation (StO₂) levels in the human thyroarytenoid/lateral cricoarytenoid (TA-LCA) muscle complex, thus providing information about typical muscle function.
Hypotheses

• After determining validity of device
• TA-LCA muscle complex will display a decrease in oxygen saturation during phonation (exercise) and a recovery back to baseline after cessation of the task.
• Total hemoglobin levels will raise during exercise and trend downward toward baseline after cessation of activity.
Methods

• Six participants total
• **Flexible laryngoscopy** performed using 4.9 mm channel port in non-contact fashion
 – 1.5 mm VLS sensor placed through working channel port
 – Endo-probe placed 1mm above one vocal fold
 – Baseline StO$_2$ and tHB obtained
 – Participants sustained loud “ah” for 60 seconds
 – Post-exercise measurements gathered
 – Three-minute voice rest before repetition of Trial 1
Methods

• Validity determined by inserting a 21-guage hollow LEMG needle into TA-LCA complex
 – Smaller VLS probe guided through LEMG needle to obtain direct StO_2 and tHB measurements
 – Same task completed with measurements at baseline, during, and after phonatory task
Figure 1 a,b. Measurement of (a) StO₂ via endo-probe and (b) tHb of the vocal folds in the TA-LCA muscle complex before and after phonation for one subject with the endo-probe.
Figure 2 a,b. Mean and standard deviation of StO2 (a) and rtHb (b) measurements made with the endo-probe before and after phonation.
Results

Figure 3a and Figure 3b. Time series of muscle StO$_2$ (a) and rtHb (b) measurements before during and after phonation for one subject with the LEMG needle-guided probe.
Results

Figure 4a, b. Mean and standard deviation of StO$_2$ (a) and rtHb (b) measurements made in the TA-LCA muscle before, during and after phonation with needle probe.
Results

Figure 5a, b. Comparison of StO$_2$ (a) and tHb (b) measurements made through the endo-probe (mucosa), and within the TA-LCA muscle.
Discussion

• Average StO$_2$ and tHb values were similar between fiberoptic and LEMG needle-guide probes at baseline and after phonation.
• Similar to what is seen in limb skeletal muscle
Future Directions

• Need more subjects
• Determine a way to measure levels with endo-probe during phonation
• Customize vocal tasks to get best outcome
• Continue studying other muscles in the larynx, as well as individuals with voice disorders.