Muscle Tone and the SLP: Definitions, Neurophysiology, Assessment, and Interventions

Heather M. Clark, Ph.D., CCC-SLP
Fellow
Department of Neurology
Mayo Clinic, Rochester MN

Nancy Pearl Solomon, Ph.D., CCC-SLP
Research Speech-Language Pathologist
Walter Reed Army Medical Center, Washington DC

The views expressed in this presentation are those of the authors and do not necessarily reflect the official policy or position of the Department of the Army, the Department of Defense, or the US Government.

The Role of the SLP
- Oral-Motor Assessment
 - Strength
 - Endurance
 - Range of motion
 - Coordination
- Oral-Motor Treatment
 - Targets same areas

Outline
Part 1: Foundations
- Literature review
 - Current concepts of muscle tone and the role of the muscle spindle
 - Muscle tone impairments associated with neuropathology
- Applications by other disciplines
 - Assessment of muscle tone for limbs and torso
 - Therapeutic interventions involving sensory and motor techniques

Outline
Part 2: SLP Applications
- Assessment of orofacial muscle tone
 - Unique anatomical and physiological features of orofacial muscles
 - Evidence of tone impairments underlying dysarthria and dysphagia
 - Measurement procedures
- Therapeutic interventions: preliminary results
 - Sensory: icing and vibration
 - Motor: strengthening exercises

Why Not Muscle Tone?
- Presumed to be important for normal and disordered neuromuscular function
- Abnormal muscle tone is presumed to be associated with specific neuropathologies of speech and swallowing
- Assessment procedures/tools are unavailable
- Interventions targeting muscle tone are often recommended to improve speech and swallowing but lack evidence

Muscle Tone Defined
- Resistance of a resting muscle to passive stretch
- Influenced by tissue elasticity and resting motor unit activity
Muscle Tone Regulation

- Peripheral Reflexes
 - Stretch (muscle spindles)

- Descending pathways
 - Indirect upper motor neuron pathways
 - Basal ganglia control circuit
 - Cerebellar control circuit

Stretch Reflex

- Receptor: Muscle spindle
- Stimulus: Change in muscle length

- Afferent: Ia
- Efferent: α
- Effects
 - on agonist: Mono (and poly-) synaptic excitation
 - on antagonist: Disynaptic inhibition
- Result: contraction

Prototypical Stretch Reflex

- Rapid lengthening of muscle spindle causes discharge of Ia afferents
- These synapse directly with α motor neurons
- Collaterals of Ia synapse on inhibitory Iα interneurons that inhibit α motor neurons of the antagonist
- GABA

Central Regulation of the Stretch Reflex

- Indirect upper motor neuron pathway
 - Descending neural drive has an overall inhibitory effect on reflexes
 - Removal of this influence leads to hyperreflexia (increased excitability of gamma motor neurons)

Central Regulation of the Stretch Reflex

- Basal Ganglia Control Circuit
 - Inhibitory effect on the motor thalamus
 - If damage leads to reduced thalamic inhibition, then cortical excitation is abnormally heightened

Rubchinsky et al., 2003; http://www.ncbi.nlm.nih.gov/pmc/articles/PMC283608/figure/fig1/
Central Regulation of the Stretch Reflex

- Cerebellar Control Circuit
 - Thought to affect tonicity, such that damage leads to hypotonia
 - Most relevant in children
 - Mechanism not understood

Tone Impairments

- Hypotonia
 - Flaccid: diminished signals in reflex arc
 - Cerebellar: increased inhibition from descending indirect pathway onto lower motor neuron pools

- Hypertonia
 - Spastic: released inhibition from descending indirect pathway onto gamma motor neurons
 - Rigid: increased excitability of α motor neurons

Variable Tone

Tone Impairments in Neurologic Disease

- Developmental
 - Cerebral Palsy
 - Hypotonia: ataxic
 - Hypertonia: spastic, hyperkinetic
 - Down Syndrome
 - Flaccid
 - Moebius Syndrome
 - Flaccid

- Acquired
 - Parkinson Disease: rigid
 - Stroke
 - Cerebral: spastic
 - Subcortical: spastic or flaccid
 - Cerebellar: hypotonia
 - MS: spastic, ataxic
 - ALS: spastic, flaccid
 - Hyperkinesias: dystonia

Assessment of Muscle Tone

- Clinical
 - Passive displacement of relaxed limb
 - Modified Ashworth Scale (6-point scale)
 - Position limb passively and release
 - Observe if position is maintained
 - Muscle palpation
 - Feel for resistance to tissue deformation
 - Pendulum swing
 - Lift limb and release
 - Observe free swinging of limb

- Instrumental
 - Torque motor
 - Resistance to rotation around a joint
 - Electromyography
 - Muscle activity: agonist-antagonist
 - Myotonometer
 - Resistance to deformation
 - Myoton
 - Damped oscillation to tissue perturbation

Management of Tone Impairments

- Pharmacologic
 - Muscle relaxants
 - (e.g., Baclofen)
 - Muscle paralytics
 - (e.g., botulinum toxin)

- Surgical
 - Spasticity
 - Tendon lengthening
 - Rhizotomy
 - Rigidity
 - Pallidotomy
 - Deep brain stimulation
Behavioral Interventions for Tone

- Intended to affect muscle spindle
 - Stretching
 - Vibration
 - Tapping

- Intended to affect nerve/muscle function
 - Icing
 - Massage

Passive Stretching

- Fast
 - Stimulates stretch reflex
 - Increases tone

- Slow
 - Inhibits stretch reflex
 - Decreases tone

- Evidence
 - Moderate to strong evidence that stretching does not affect spasticity in limb (Cochrane review)

Vibration

- Stimulates muscle spindle
 - Increases tone of stimulated muscle
 - Decreases tone of antagonist

- Evidence
 - Improves head/neck alignment (Canon et al 1987)
 - Improves spasticity (Noma et al 2009)

Tapping

- Stimulates muscle spindle
 - Increases tone

- Evidence appears to be lacking

Icing

- Decreases nerve conduction velocities
- Decreases muscle contraction speed and extent

- Evidence
 - Numerous studies in PMR literature addressing various muscle groups
 - Improved jaw opening in children with spastic CP (dos Santos & de Oliveira, 2004)

SUMMARY

Part 1: Foundations

- Muscle tone is mediated by stretch reflex
- Stretch reflex is affected by
 - Muscle spindle function
 - Central nervous system regulation

Therapeutic interventions

- Aim to alter responsiveness of muscle spindle or other components of the stretch reflex
- Evidence for benefit in general skeletal muscles varies
Part 2: SLP Applications

- Assessment of orofacial muscle tone
 - Unique anatomical and physiological features of orofacial muscles
 - Evidence of tone impairments underlying dysarthria and dysphagia
 - Measurement procedures
- Therapeutic interventions: preliminary results
 - Sensory: icing and vibration
 - Motor: strengthening exercises

Muscle Spindle Action in Speech/Swallowing Muscles

- Jaw closing muscles
 - High density muscle spindles
 - Strong stretch reflex
- Face & lips
 - Low density or lack of muscle spindles
 - Do not exhibit stretch reflexes

Muscle Spindle Action in Speech/Swallowing Muscles

- Tongue & palate
 - Muscle spindle density similar to limbs
 - Do not exhibit typical stretch reflexes (Neilson et al., 1979)
- Pharynx, larynx
 - Presence of muscle spindles varies across muscles
 - No studies to date have demonstrated stretch reflexes in the human larynx (Ludlow, 2005) or pharynx

Assessment of Orofacial Muscle Tone

- Clinical
 - Stretch
 - Palpation
- Instrumental
 - OroSTIFF (only one designed for orofacial use)
 - Myotonometer
 - Myoton

Clinical Assessment of Muscle Tone

- Resistance to passive stretch or displacement
 - Externally applied stretch, usually across a joint
- Resistance to deformation
 - Palpation of relaxed muscles
- Orofacial tone assessments
 - Dworkin & Culatta (1996)
 - Beckman (1988)

Instrumental Tools

- Measure tissue response to perturbation
 - Resistance to passive stretch
 - Resistance to tissue deformation/palpation
OroSTIFF

(Chu, Barlow, Kieweg, & Lee, 2010)

Myotonometer

- Measures deformation and force
- Calculates tissue compliance

Myoton

- Parameters
 - Frequency of oscillation
 - Damping coefficient
 - Stiffness

Veldi et al. (2002)

- Application for sleep apnea
- Assess tone of tongue and velum

Evidence for Tone Impairments in Dysarthria and Dysphagia

Presumed (Darley, Aronson & Brown, 1969)
- Flaccid: hypotonia
- Spastic: spasticity
- Hypokinetic: rigidity
- Ataxic: normal
- Hyperkinetic: mixed

Data
- Flaccid: hypotonia
- Spastic: No hyperactive stretch reflexes in the tongue in spastic dysarthria (Nielsen, et al 1979)
- Hypokinetic: Increased lip stiffness (Hunker, Abbs, & Barlow, 1982; Chu et al., 2010)
- Ataxic: none
- Hyperkinetic: none

Stiffness of tongue and cheeks

- Are measures of tissue stiffness obtainable and repeatable from the tongue and cheeks of neurologically normal individuals?
- Do tongue and cheek stiffness differ between persons with LMN, UMN and no neurologic lesions?
- Does stiffness of the right and left sides differ in persons with unilateral neurologic deficits?
 - Lower with LMN impairment
 - Higher with UMN impairment

(Solomon & Clark, 2010)
Method

Participants
- 9 neurologically normal adults
- 13 neurologically impaired adults

Summary: Tongue & Cheek Stiffness
- Normal and disordered participants tolerated the Myoton measurement procedures well
- Tongue stiffness was generally lower in the LMN group than in the normal group
- Very preliminary
 - Interpret with extreme caution!!

Interventions for Orofacial Muscle Tone

Sensory
- Applied by clinician
- Target sensory endings or afferent pathways of reflex loops

Motor
- Performed by patient
- Target efferent pathways or muscle function

Slow Stretch

Peripheral targets
- Inhibits stretch reflex to reduce tone and increase ROM (applicable only for jaw)

Central targets
- Calming effect (addresses hyperresponsivity)

Quick Stretch & Tapping

Peripheral targets
- Intended to increase tone by stimulating the stretch reflex
- Would expect greatest effects in jaw-closing musculature

Central targets
- Alerting effect (addresses hyporesponsivity)
- Stimulate proprioceptive pathways (be aware of interference issue)
Massage

- Peripheral Targets
 - Superficial and deep cutaneous receptors
 - Intended to decrease tone and/or muscular hyperfunction
- Central Targets
 - Speed and/or intensity of massage determines whether effects are calming or alerting

Vibration

- Peripheral Targets
 - Elicits tonic/tendon vibratory reflex (TVR)
 - Acts on the muscle spindle
 - Increases tone of agonist
 - Decreases tone of antagonist via reciprocal inhibition
 - Would be expected to only influence jaw-closing muscles
- Central Targets
 - Speed and/or intensity of vibration determines whether effects are calming or alerting
 - Purported to have calming or alerting effects, depending on the child
 - Activate proprioception pathways (interference effects)
- Additional Issues
 - Prolonged vibration may cause tissue breakdown
 - May exacerbate extrapyramidal symptoms

Cold

- Peripheral Targets
 - Decreases tone by decreasing nerve conduction velocities
 - May heighten sensitivity of cutaneous receptors
- Central Targets
 - Generally has an alerting effect

Sensory intervention on orofacial muscle tone: Preliminary study

- Submental Tissue
 - Vibration
 - Icing

Method

- Participants
 - 16 women
 - Neurologically normal
- Tissue compliance measures
 - Tested on 2 days
 - Before and after
 - Icing
 - Vibration
Submental Compliance Before & After Sensory Intervention

Summary:
Submental compliance

- Submental tissue compliance decreased (stiffness increased) after icing but not vibration
- Increased tissue stiffness after icing could derive from
 - Stiffening of non-muscular and muscle tissue
 - Changes in blood flow
 - Increased muscular activity

Motor Intervention

- No evidence for swallowing or speech
- Limited indirect evidence from obstructive sleep apnea syndrome (OSAS) literature
 - Guimaraes et al. (2009)
 - 31 adults with obstructive sleep apnea syndrome
 - 3 month program of oropharyngeal exercises
 - Improved snoring frequency and intensity, daytime sleepiness, sleep quality, and overall severity
 - Puhan et al. (2005)

Didgeridoo playing reduces snoring

- 25 adults with OSAS
 - 14 practiced ~25 min, 6 days per week, 4 months
 - 11 controls
 - Improved
 - Daytime sleepiness (Epworth scale)
 - Partner rating of sleep disturbance
 - Apnoea-hypopnoea index

Case Study

- 42 y.o. male
- Multiple injuries
- 2 mo post blast injury
 - Evaluation
 - Strength (QIP)
 - Tone (Myoton)
- 4 mo post
 - Tongue exercises
 - 40 trails
 - 4x/day
 - 5 days/wk
 - 5 mo post
 - Add cheek exercises
 - 6 mo post
 - Discharge

SUMMARY
Part 2: SLP Applications

- Orofacial muscle tone is rarely assessed by the SLP, and is almost never quantified
- Certain instruments may become available to determine orofacial tissue stiffness
- Therapeutic interventions intended to normalize tone may be applied to the orofacial muscles, but no evidence exists
- Very new and very preliminary evidence indicates that
 - Tissue compliance can be assessed for the lingual, facial, and submental muscles
 - Icing may increase submental tissue tone
 - Tongue strengthening exercise increases strength but may or may not increase tone
- Much more work needs to be done to address these issues
References