Evaluating Computer-based Treatment of Anomia: Results of Phase I Trials

Ruth Fink, MA
Moss Rehabilitation Research Institute

Elizabeth Rochon, PhD
University of Toronto and Toronto Rehabilitation Institute

Gail Ramsberger, ScD.
University of Colorado

Anastasia Raymer, PhD
Old Dominion U., Norfolk, VA

ASHA, November, 2010, Philadelphia, PA Contact: rink@einstein.edu

Phases of Research

- Pre-efficacy studies (Phase 1 and 2)
- Efficacy studies (Phase 3)
- Effectiveness (Phase 4 and 5)

Pre-efficacy Studies

Phase 1
examines new treatments
tests for therapeutic effect
small, single subject designs

Phase 2
optimizes procedures
determines appropriate candidates
dosage (intensity)
further explores potential efficacy

Efficacy studies

- Phase 3: Clinical trial
 - Controlled large group design
 - Tests the efficacy of the treatment under ideal conditions
Effectiveness studies

- Phase 4
 - Potency under typical clinical conditions
- Phase 5
 - Practical considerations (e.g., Cost-benefit analysis)

Computer-Assisted Treatments: a popular movement

Computer-assisted treatments have potential to:
- Increase the intensity of therapy
- Improve outcome and efficiency of therapy
- Extend the period of rehabilitation

State of the evidence

A growing body of experimental literature attests to the benefits of this approach, for example:
- Lingraphica: Aftonomos, Steele, & Wertz, 1997
- Sentactics: Choy, Holland, Cole, & Thompson, 2009
- MossTalk Words: Fink, Brecher, Schwartz, & Robey, 2002

Large-scale (Phase 3) clinical trials, a level of evidence critical for establishing treatment efficacy are lacking
- Preliminary research (Phase I and II trials) needed to shape factors (patient selection criteria, intensity of administration, etc.) that are prerequisite to a Phase 3 clinical trial.
- Important to inform clinicians about the evidence available for treatment technology they may recommend.
Outcomes: MossTalk Words® (MTW)

Today’s talk
1. Present a model for facilitating programmatic research to advance the state of evidence on a computer-assisted treatment.
2. Summarize the data that emerged from this project.
3. Discuss clinical implications and future directions.

What is MossTalk Words® (MTW)

- A computerized therapy system for aphasic adults with word retrieval deficits
- Provides extensive practice in word comprehension and production using multimodality cues and feedback
- Treatment modules
 - Theoretically motivated
 - based on effective treatments
 - routinely employed by clinicians

Outcomes: MossTalk Words®

Today’s talk
1. Present a model for facilitating programmatic research to advance the state of evidence on a computer-assisted treatment.
2. Summarize the data that emerged from this project.
3. Discuss clinical implications and future directions.

Two Modules

Cued Naming (CN):
Provides visual and auditory cues that can be systematically applied in a hierarchy to promote retrieval (Linebaugh & Lehner, 1977)

Multimodality Matching (MMM):
Encourages semantic processing to strengthening the association between words and pictures (Howard, Patterson, Franklin, Orchard-Laid, & Morton, 1984a,b)
Additional features

- Customize vocabulary
- Create homework assignments
- Track results

Phase 1 Study

- Investigated effects of CN Module: a hierarchical phonological cueing procedure
- Two conditions of instruction:
 - clinician guided (CG) condition
 - Partially self-guided (PSG)
- 6 subjects with primarily phonologically based deficits, 3 in each instruction condition

Conditions of instruction

- Clinician guided (CG)
 - worked on computer exercises with clinician 3 times/week
- Partially self-guided (PSG)
 - Worked on computer exercises 3 times/week
 - 1 day with clinician
 - 2 days independently

Prior Studies

Our study draws on prior studies without replicating any of them.

> From Linebaugh and Lehner we took the idea of individuating the cueing hierarchy-moving up and down hierarchy on each trial.
> From Howard et al., Raymer et al. and Thompson et al., we limited cues to phonological type.
> To provide maximum support for all severity levels, we included both written and spoken cues.
Study Aims

To assess acquisition, generalization and maintenance effects associated with computer-assisted hierarchical cueing.

Design

- Single Subject (replicated)
- Multiple Baseline Across Behaviors
- Two conditions:
 - Partially self-guided (PSG)
 - Clinician-guided (CG).

Participants

- 6 chronic aphasic subjects
 - 5 M; 1 F
 - 54-64 yrs (mn= 60 yrs)
 - 2.3-7.5 yrs post onset (mn=4 yrs)
- Moderate-severe naming deficits
 - Naming severity: 17.8 - 77.4 % (PNT)
 - Aphasia Severity: 2 - 4 (BNT)
- Primarily phonological in nature
 - Phonological retrieval and/or
 - Phonological encoding
- Patients with central semantic deficits excluded
 - Mild semantic (2)

Table 1. Demographic information and language classification.

<table>
<thead>
<tr>
<th></th>
<th>Clinician Guided</th>
<th>Partially Self Guided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>54 64 63 66 58 63</td>
<td>56 62 63 63 63</td>
</tr>
<tr>
<td>Gender</td>
<td>M F M F P M F</td>
<td>M F M F</td>
</tr>
<tr>
<td>Disability</td>
<td>C C C C C C</td>
<td>C C C C</td>
</tr>
<tr>
<td>Time Post Onset (mos.)</td>
<td>12 40 28 54 40 41</td>
<td>12 3 2 3</td>
</tr>
<tr>
<td>Time Language Therapy</td>
<td>17 9 5 3 11</td>
<td>17 9 5 3 11</td>
</tr>
<tr>
<td>Aphasia Subtype</td>
<td>Conduction</td>
<td>Motor</td>
</tr>
<tr>
<td>MDAS Anxiety</td>
<td>4 2 2 3 2 2</td>
<td>4 2 2 3 2 2</td>
</tr>
</tbody>
</table>
Training Procedure

• The Cued Naming module of MTW software delivered the picture stimuli, cues and feedback.

• 6 of the 8 cues were used and presented in a hierarchy, individually determined for each subject.

Multimodality Cues

Auditory cues
- Initial phoneme
- Sent. completion
- Word repetition

Written cues
- First letter
- Sent. completion
- Oral reading

Training conditions

• Clinician guided condition (CG)
 3 participants

• Partially self-guided condition (PSG)
 3 participants

Duration of Treatment

• Subjects were treated 3 times a week

• Treatment continued until criterion was reached or for a maximum of 4 weeks
Outcome measures: naming

- Big Naming test-pre and post
- Daily naming probes of trained and untrained items during baseline, training, maintenance and follow-up phases
- Follow-up naming probes were administered after an average of 4 weeks

Outcome measures

- Philadelphia Repetition Test (PRT)
- Philadelphia Oral Reading Test (PORT)

Results
Study Results

• Training - specific acquisition was demonstrated in both conditions for all subjects
 – 2 of 3 subjects in each group showed moderate-strong gains
 – 1 subject in each group showed weaker gains
 – Set 1 performance higher for 4 of 6 participants (2 from each group)

• Gains were maintained when treatment was withdrawn

• Small advantage for Clinician-guided group

Results: Generalization

• Limited and variable generalization patterns were noted in:
 – Oral Reading and Repetition
 – 339 item pre-post Naming test
 • All showed improved scores on trained items
 • GM and AS also showed significant improvement on untrained items
 – Naming of untrained items during training (EL and AS)
Conclusions

• Chronic aphasic subjects with moderate to severe phonologically-based naming impairments can benefit from a computerized cued naming protocol.

• Independent work on the computer can be an effective adjunct to therapy.

A model for facilitating research

Identify intervention (e.g., MossTalk Words)
Organize collaborative network

Site A Site B Site C
Evaluate results
Plan Phase 3 Clinical Trials

Organizing Collaborative network

Letters of invitation were sent to researchers and clinicians who work with individuals with aphasia.

* Collaborators agreed to:
 * Participate in a brief training program
 * Complete a set of evaluation forms
 * Execute a controlled experiment of their design (research sites)
 * Use MTW in clinical setting (clinical sites)

Results of Dissemination

End of Year 1
 * 3 Research groups had preliminary data on clinically relevant factors
 * Effectiveness for various etiologies and language impairments
 * Effectiveness when self administered
 * Impact of therapy intensity on outcomes

Subsequently
 * Researchers presented and published several articles on clinically relevant aspects of MTW
Conclusions

Findings confirm and extend Fink et al data:

- CN and MM modules were effective in improving naming of trained words (acquisition and short-term maintenance) for individuals with moderate/severe naming impairments.

- Software effective with varied population (NPA, Semantic Dementia, and moderate-severe chronic aphasia)

- Some advantage for greater intensity, but significant improvement noted with either intensive and non-intensive schedules.

- Independent work on computer can be an effective adjunct to clinician guided treatment

- BUT

 - Limited and variable generalization to untrained words or tasks.

Acknowledgements

MTW research was supported in part, by a grant from the NIH (NIDCD) (R01DC00191) and by a grant awarded by the Peer Review Committee of the Moss Rehabilitation Research Institute. Funded.

The dissemination project was funded, in part, by a grant from the NEC Foundation.

Assistance and resources were made available through the Neuro-Cognitive Rehabilitation Research Network (NCCRN) at www.nccrn.org supported by grant #1 R24 HD050836 from the NICHD/NIMH.

MossTalk Words was developed with partial funding from McLean Contributionship and MossRehab.

* We are grateful to all the researchers and clinicians who have participated.
References

