INTRODUCTION

Children’s comprehension development is likely supported by input cues. Hirsh-Pasek and Golinkoff (1996) described three phases outlining the availability of various input types (e.g., prosodic, semantic, syntactic) and the shifting importance of these across development.

Identifying cues is not sufficient to show that children employ them.

Function morphemes are morphosyntactic cues believed to play a critical role in speech segmentation and learning syntax.

Function morphemes are frequent in the input, differentiated from content words by prosodic and phonological characteristics, and co-occurring in phrase structure (e.g., -ing verbs and other function words). Previous child studies have discovered these patterns and apply this information to discover other aspects of English syntax in the next phases.

Research is regarding the function morphemes in comprehension: Gorka and McWhinney (1993) and Zangl and Fernald (2007) found that young children point to function morphemes when article absence occurs, then noun comprehension suffered.

The grammatical word “find” was used for “me” compared to Ungrammatical, “Find bird for me” (Gorka & McWhinney, 1993). Grammatical, “look at the book” compared to Nonsense, “Look at the shoe” (Zangl & Fernald, 2007).

Other researchers have found nonsignificant differences when function morphemes in verb phrases were manipulated.

Grammatical, “Who is pointing?” compared to Ungrammatical, “Who is pointing?” (Hirsh-Pasek, Beade, & Estis, 2007).

Grammatical, “Find dancing” compared to Nonsense, “Find dancing” (Hirsh-Pasek, & Estis, 2007).

INTRODUCTION

Do young, typically developing children show increased comprehension for verbs given sentence context?

To what extent do young children use verb-specific cues?

Are young children sensitive to function morphemes?

Are these patterns and apply this information to discover other aspects of English syntax in the next phases?

METHOD

AUDITORY STIMULI:

1. Three different lists were created. Each list contained 6 trials for each morpheme condition for a total of 48 experimental sentences plus 1 practice trial (Who is eating?).

2. All four trial lists included Grammatical, -ing, Ungrammatical, -est, and Nonsense -d forms systematically varied across target verbs.

3. Verbs were targets in one trial and distractors with varied targets in other trials.

4. Auditory stimuli were digitally recorded by the first author using a direct-dense recording procedure in Computerized Speech Lab (Kay) and edited in Adobe Audition, v. 1.5 (2004).

5. Verb plus morpheme duration (e.g., -ing, -ing, -ing, -est) were about 550 ms. Overall sentence durations were about 1.750 s (1750 ms).

VISUAL STIMULI:

1. Authors video-recorded a young preschooler acting out target verbs.

2. Videos were edited using Adobe Premiere Pro, v. 1.5 (2005) to create representative video events for all verbs.

3. Video events were inserted into PowerPoint in a simultaneous split-screen presentation.

4. Video events paired with target verbs did not appear on the same side for more than two trials.

5. Two versions of each pairing, Versions A and B, were created to counterbalance; left and right side presentation for each verb target.

PHASE 1: DATA ANALYSIS

1. Data were re-analysed for 9 of 12 participants with >70% accuracy for Noun task.

2. Differences from chance, however, were significant for a morpheme condition.

3. The first author ran the paradigm from a computer outside of the booth. The second author sat behind the screen and monitored video recording participants’ eye gaze.

4. The video events continued for 1 s following the offset of the linguistic stimulus.

PHASE 2:

1. Percent of Looking to Target

2. Differences from chance, however, were significant for a morpheme condition.

PHASE 3:

1. Percent of Looking to Target

2. Differences from chance, however, were significant for a morpheme condition.

PHASE 4:

1. Percent of Looking to Target

2. Differences from chance, however, were significant for a morpheme condition.

SELECTED REFERENCES


ACKNOWLEDGMENTS: This research was supported by a USA’s Research Council Grant awarded to the 2nd author. We are grateful to Whitney Drebelski who served as the primary eye gaze coder. We also recognize additional data analysis (Phases 4 and 5) by Shaye L. Keys, supported by the University of South Alabama’s Summer Undergraduate Research Program. We thank participants and their families. CONTACT AUTHOR: Brenda L. Beverly, University of South Alabama, 1139 HAIN, 307 N. University Blvd., Mobile, AL 36688-0002, 251-445-9086, bbeverly@sua.edu.