Retention of speech sequence learning in stuttering and Parkinson’s disease

November, 2009
Sarah Smits-Bandstra, McGill University
Vincent Gracco, McGill University
Multi-Site Study

Sarah Smits-Bandstra, Ph.D.
Jill Harrison & Valentine Meyer, SLPs
Vincent Gracco, Ph.D.
Luc De Nil, Ph.D.
Bonnie Bereskin, SLP
Introduction

“There are strong indications that the BG circuit…plays an important role in the pathophysiology of stuttering” (Alm, 2004; Giraud et al., 2008; Jones et al., 2002; Lim et al., 2005).
Behavioral Similarities for PPD and PWS

1. tremor (Denny & Smith, 1992),
2. reaction time slowing (Smits-Bandstra, De Nil, & Rochon, 2006),
3. slow movement durations (Max & Yudman, 2003),
4. unnatural breaks and pauses in fluent sequence production (hand movements) (Weiss, Stelmach, and Hefter, 1997; Webster 1986; 1989).

Why PPD?
Why PPD?

Neurological Similarities for PPD and PWS

1. Left Deactivation –

2. Left Hyperactivation –

3. Right Hyperactivation –
Narrowing the field
Implicit Sequence Learning

Implicit = *I learned how to do it but I can’t explain how/what I learned* (Siegert, Taylor, Weatherall, & Abernethy, 2006).
Literature Review:
Sequence Learning

- PPD implicit sequence learning deficits (Doyon, 2008; Siegert et al., 2006).
 - Speech and nonspeech tasks

- PWS sequencing deficits (Smits-Bandstra, De Nil, & Rochon, 2006; Smits-Bandstra, De Nil, & Saint-Cyr, 2006; Smits-Bandstra & De Nil, 2009; Smits-Bandstra & De Nil, submitted).
 - Speech and nonspeech tasks
Research Question

Do PWS and PPD show similar deficits in implicit sequence learning and retention relative to control subjects?
Methods

Subjects
14 PWS (6♀) 14 CS (6♀) 14 PPD (6♀)

Age
65.1 (6.0) 65.5 (5.6) 64.5 (6.8)

- mental state (MMSE), depression (BECK)
- speech and language (SSI-3, dysarthria)
- digit span, hearing, vision, medications
Task

Sequence = PO PI PO PE PI PA PE PA

(PA) (PE)

(PI) (PO)

8 trials = 1 sequence
Task

Sequence = PO PI PO PE PI PA PE PA

PO … PI (50%) PE (50%) PA (0%)
Procedure

Day One
- Block 1 – 72 sequence trials (9 sequences)
- Block 2 – 72 sequence trials
- Block 3 – 72 sequence trials
- Block 4 – 72 sequence trials
- Block 5 – 72 random trials (no reps, eg PO PO)

Retention Test
- Block 1 – 72 sequence trials
- Block 2 – 72 sequence trials
- Block 3 – 72 random trials
Procedure

Task:
Random Block 5

- sequence trials (PO PI)

- violation trials (PO PA)

(Eimer et al., 1996)
Accuracy

Percentage Accuracy of Control Subjects, PWS and PPD for Session One and the Retention Session

- Control
- PWS
- PPD

First Session
- Block One: 95%
- Block Two: 95%
- Block Three: 95%
- Block Four: 95%

Retention Session
- Block One: 95%
Retention: Speech Skill Learning

Reaction Time of Control subjects, PWS and PPD for All Syllables

Seconds

Block 1 | Block 2 | Block 3 | Block 4 | Block 1 | Block 2
Day One | Day One
Retention Test | Retention Test

Control ALL | PWS ALL | PPD ALL
Implicit Sequence Learning

Sequence-Specific Reaction Time for Control Subjects, PWS and PPD on Session One and the Retention Session

- **Control**
- **PWS**
- **PPD**

The graph shows the sequence-specific reaction time in seconds for different pairs (random and sequence) across the first session.
Explicit Knowledge Questionnaire Scores (out of 10)

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>PWS</th>
<th>PPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>3.1 (2.1)</td>
<td>3.4 (1.8)</td>
<td>3.2 (1.8)</td>
</tr>
<tr>
<td>Retention</td>
<td>4.3 (2.1)</td>
<td>5.0 (1.4)</td>
<td>5.2 (1.3)</td>
</tr>
<tr>
<td>chance</td>
<td></td>
<td>33.3%</td>
<td></td>
</tr>
<tr>
<td>chance</td>
<td></td>
<td>50%</td>
<td></td>
</tr>
</tbody>
</table>

Controls’ better performance not attributable to explicit learning (Rose, 2001; Russel & Rosler, 2000).
Discussion - Similarities

- Both show delayed reaction time (blocks 1 and 2)
- Both show sequence-specific learning and general speech skill learning deficits
- Both “catch up”, not just slower
Discussion - *Dissimilarities*

- PPD poorer accuracy
- PWS poorer general skill retention RT
- PWS unexpected pattern of implicit sequence learning
Theoretical Implications
Acknowledgements

Special Thanks
Alexandra Devieux
Sophie Lafaille
Pascale Tremblay
Silke Paulman

Funding Sources
CIHR

References
upon request
References

References

References

Medication

- PPD on medication
 - Large body of existing data (Fattaposta, 2002; Carbon et al., 2006).
 - Minimize large bradykinesia effects while still observing sequence learning effects (Ghilardia et al., 2007).
 - Sequence learning more affected by BG-frontal communication deficit than by DA medication (Muslimovic et al., 2007).
- Ethics/Ease of recruitment
Explicit Knowledge Questionnaire

(Sequence = PO PI PO PE PI PA PE PA)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The syllables never appeared in this order</td>
<td>The syllables appeared in this order very rarely</td>
<td>The syllables sometimes appeared in this order</td>
<td>The syllables often appeared in this order</td>
<td>The syllables always appeared in this order</td>
</tr>
</tbody>
</table>

A) PI PE X
B) PO PE PI √
C) PO PE PI PA √
Why PPD?

Neurological Similarities for PPD and PWS

1. Left Deactivation - primary motor cortex, supplementary motor area (PWS also left Broca’s)
2. Right Hyperactivation - SMA, prefrontal cortex, anterior cingulate bilateral cerebellum (PWS also right Broca’s)
3. Left Hyperactivation - prefrontal cortex, insula (Alm, 2004; Smits-Bandstra & De Nil, 2007)