Effect of Dystrophin Deficiency on Selected Intrinsic Laryngeal Muscles of the \textit{mdx} Mouse

Lisa B. Thomas
Marshall University
ASHA Convention
November 2008

Acknowledgements

- Co-Authors
 - Joseph Stemple, Ph.D.
 - Anne Harrison, Ph.D.
 - Richard Andreatta, Ph.D.
 - Francisco Andrade, Ph.D.

Intrinsic Laryngeal Muscles

- Highly specialized form of skeletal muscle
- Similar to extraocular muscle phenotype
- Areas of divergence from limb skeletal muscle
 - Morphogenesis
 - Myosin heavy chain isoforms present
 - Mitochondrial content
 - Regenerative capacity
 - Innervation patterns (motor, sensory)
 - Sensitivity to disease – DMD (2006 study)

Duchenne Muscular Dystrophy

- Most common form of MD
- 1 in every 3,500 live male births
- Motor delays, weakness by age 2
- Marked reductions in fx and muscle size by ages 6-11
- Death by end of third decade
- Some muscles preferentially spared – extraocular

Duchenne Muscular Dystrophy

- Absence of dystrophin, a protein of the cytoskeleton
- Dystrophin
 - Integral component of DGC
 - Scaffolds sarcolemma during muscle contraction
 - Possible signaling role / Control of Ca levels

Dystrophin-Glycoprotein Complex

Andrade et al., 2000; Kaminska et al., 1992; Merrache & Darris, 2001
Andrade et al., 2003; Goding et al., 1996; McLoon et al., 2004; Noden & Francis-West 2006; Porter et al., 1995; Thomas, Harrison, et al. (in press)
Ervasti et al., 1991; Lapidos, Kakkar, & McNally, 2004; Rando, 2001
Pathophysiology

In the absence of dystrophin...
- Loss of support structure leads to disruption of sarcolemmal (cell membrane) integrity
- Influx of Ca^{2+} triggers destruction of proteins
- Fiber necrosis
- Attempts at fiber regeneration (failed)
- Eventual muscle fibrosis and fatty infiltration

Menache & Darris, 2001; Petrof, 2002

Markers of Pathology

- Evidence of disrupted sarcolemma
- Fiber degeneration and regeneration
 - Inflammation, necrosis
 - Central nuclei
 - Pleomorphic fibers
- Eventual widespread fibrosis, necrosis

Davies & Nowak, 2006; Menache & Darris, 2001

The Animal Model of DMD

- *mdx* mouse – dystrophin deficient
 - Genetic and biological similarities to human DMD
 - Differences in disease severity and functional impact across species

Bulfield et al., 1984; Menache & Darris, 2001

Introduction

2006 Preliminary Study

- Examined effects of dystrophin deficiency on the thyroarytenoid (TA) and posterior cricoarytenoid muscles (PCA) of the larynx
- *mdx* mouse

Thomas, Joseph, et al. (in press)

Normal Appearing Leg Muscle (Gastrocnemius)
Introduction
2006 Preliminary Study

- Results: While deficient in dystrophin, TA and PCA did not show the effects of the disease process.
- Conclusions: TA and PCA possess special features which protect them from the effects of this disease

Thomas, Joseph, et al. (in press)

Laryngeal Muscle Specialization

- Much of research on ILM specialization conducted on 2 primary laryngeal muscles (TA, PCA)
- Are these properties true of all laryngeal muscles?
- Do all laryngeal muscles share a similar level of biological specialization?
- Implications for function and rehabilitation

Laryngeal Muscle Specialization

- Continued study in 2007 - Possible diversity among laryngeal muscles
 - Literature review showed evidence of diversity across laryngeal muscles
 - Two laryngeal muscles with features (e.g., contractile speeds, proprioceptive mechanisms, etc.) more reflective of limb muscle
 - Interarytenoid
 - Cricothyroid

Katto et al., 1987; Okamura et al., 1988; Tellis et al., 2004

Current Study

Effect of Dystrophin Deficiency on Selected Intrinsic Laryngeal Muscles of the mdx Mouse

Purpose Statement

- To further define the biological characteristics of two intrinsic laryngeal muscles (the interarytenoid and cricothyroid) and their similarity/dissimilarity to other laryngeal muscles through the use of the mdx mouse model.
The Interarytenoid

- Deviates from other laryngeal muscles in:
 - Motor Innervation
 - Transverse fibers are unpaired; receive bilateral innervation from RLN
 - Supplemental innervation from SLN
 - Sensory: Presence of muscle spindles
 - Contractile profile (ie, myosin isoforms) similar to limb muscle

Katto et al., 1987; Maranillo et al.; 2005; Mu et al., 1994; Tellis et al., 2004

The Cricothyroid

- Deviates from other laryngeal muscles in:
 - Morphogenesis
 - Innervation
 - Contractile profile (ie, myosin isoforms) similar to limb muscle
 - Sensitivity to disease

Benninger et al., 2006; Hyodo et al., 2001; Lucas et al., 1996; Marques et al., 2004; Rhee et al., 2004; Sperber, 1981

Primary Investigation

Methods

- Animals
 - *mdx* mouse (*n* = 8); C57BL control (*n* = 8)
 - Dissected out whole larynges and gastrocnemius muscle
 - Serial 10-um thick cryosections
- H & E Staining
- Evans blue dye tests
- Immunocytochemistry (dystrophin, utrophin)

Results H & E – Gastrocnemius

Results H & E - Laryngeal

C57BL

GT

SCA

PCA
Results – Central Nuclei

Percentage Central Nucleation Across Muscles

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Control</th>
<th>mdx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastroc*</td>
<td>3.93% (3.08)</td>
<td>65.93% (7.99)</td>
</tr>
<tr>
<td>PCA</td>
<td>7.13% (3.83)</td>
<td>4.88% (2.14)</td>
</tr>
<tr>
<td>SCA</td>
<td>5.33% (3.01)</td>
<td>1.60% (1.62)</td>
</tr>
<tr>
<td>CT</td>
<td>5.83% (4.3)</td>
<td>11.63% (2.76)</td>
</tr>
</tbody>
</table>

p < .000
Inter Rater Reliability: ICC = .98

Results – Evans Blue

Gastroc

Strap

Results - Utrophin

- **Background**
 - Utrophin
 - Dystrophin homolog
 - Present only at NMJ in mature muscle fibers
 - To study
 - Mark NMJ (alpha-bungarotoxin)
 - ICC staining for utrophin
 - Expect utrophin at NMJ in mature fibers
Results – Utrophin Monoclonal

Gastrocnemius
- Utrophin at NMJ in C57BL
- Utrophin re-localized to sarcolemma in *mdx*

Laryngeal
- Utrophin not present at NMJ in mature C57BL fibers
- No shifts in utrophin expression in *mdx*

Results – Utrophin Monoclonal (Laryngeal)

Conclusions
- SCA spared from the effects of dystrophin deficiency
- CT shows subtle changes indicative of regeneration (central nucleation)
- Utrophin upregulation not evidenced in spared muscles

Discussion
- SCA
 - Has response to disease similar to other laryngeal muscles
 - Has other features similar to limb muscle
 - May be “blended” form of muscle
 - Varying level of specialization within the larynx

Hypothesis
Muscles will show effects of disease as in limb muscle
- Neither muscle demonstrated disease effects as seen in limb muscle
 - SCA - full sparing
 - CT – subtle regenerative changes
 - Suggest SCA and CT are not comparable to limb muscle
 - Possess specialized features as other laryngeal muscles
Discussion

CT
- Two-fold increase in central nuclei (not significant)
- Similar increase shown by Marques et al
- No widespread evidence of fiber degeneration
- Comparable to results in other mildly affected muscles
 - Masseter
 - EOM (levator palpebrae superioris, retractor bulbi)
 - Previous study of CT (2007)

Marques et al. (2007)

Discussion

CT (con’t)
- Implications re: nature of the CT
 - Blended, transitional form of muscle
 - Mechanical differences
 - Different sarcolemmal management?
 - Mechanical requirements of CT?

Discussion

Mechanisms of Sparing
- Opens door for use of murine model in laryngeal study
- Organization of DGC in laryngeal muscle
- Implications for voice therapy

Discussion

Limitations
- Muscle sections
- Utrophin antibodies
- Use of the animal model

Concluding Remarks

Laryngeal muscles distinctive
- What does this mean in the clinic?
 - Study of the biology of laryngeal muscles can lay
 a foundation for physiologic therapies
 - Will require:
 Communication of clinical needs to the bench
 Translation of bench findings to clinicians

Thanks to
References

References

References

References