Motor learning utilizes “a set of processes associated with practice or experience leading to relatively permanent changes in capability for movement” (Schmidt & Lee, 1999)
• Used to promote retention, accuracy, and consistency of learned motor skills
• Contribute to ability to perform the same movements many times with little-no cognitive effort
• *Acquisition* is a first step, but performance during *acquisition* is *NOT* a good index of *retention*
• Skill is *performed* during practice
• Skill is *learned* if retained after practice
• Pace varies for each individual (age, etiology, severity, responses), so very important to USE CLINICAL JUDGMENT
• **General rule:** make things **difficult** in early learning to maximize the learning result.
• Cognitive-motor **challenges** appear to be the way to effective motor learning (Kent & Strand, 2007)
• Thus far, research suggests these principles used in limb motor learning and relearning can be applied for oral motor (re)learning also.

Principle

<table>
<thead>
<tr>
<th>Practice Distribution</th>
<th>Better for Acquisition</th>
<th>Better for Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Few sessions, short time</td>
<td>More sessions, over time</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Practice Schedule</th>
<th>Blocked</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small, regular intervals</td>
<td>Longer, variable intervals</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phonetic context, prosody, rate in practice</th>
<th>Consistent</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of goal (/b/ in isolation 10x)</td>
<td>Specific to goal (bit, bat, bet)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feedback Type</th>
<th>Knowledge of performance (tongue was too far out)</th>
<th>Knowledge of results (3 out of 4 correct)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrinsic feedback</td>
<td>Promotes self-monitoring</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feedback Frequency</th>
<th>Often</th>
<th>Rare, inconsistent, fade out</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Feedback Timing</th>
<th>Immediate</th>
<th>Delayed</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Attention Focus</th>
<th>Internal, Articulator oriented</th>
<th>External, Goal oriented</th>
</tr>
</thead>
</table>
Please use citation:
Hancock, A., Friedman, I. Schulz, S., Bamdad, M., Youmans, G. Youmans, S. (2008). What is motor learning and how can it help speech? *ASHA seminar, Chicago, IL.*

Motor Learning Guided (MLG)

Complete step 1 for entire set of 5 stimulus cards, then shuffle the 5 cards and proceed to step 2 for each of those 5 cards, shuffle and go on to step 3.

Step 1: Say together, then
- a. Client repeats once (if wrong, go back to saying together)
- b-d. Client repeats 3 times, with 4 second pauses between
 Clinician says it, waits 4 seconds, provides # correct out of 3 attempts.

Step 2: *(random order)* Clinician will verbally read card, wait 4 seconds, give Client card to read
- a. Client repeats once (if wrong, clinician says it again)
- b-d. Client repeats 3 times, with 4 second pauses between
 Clinician says it, waits 4 seconds, provides # correct out of 3 attempts.

Step 3: *(random order)* Client will read card aloud.
- a. Client repeats once (if wrong, tell client to try it again)
- b-d. Client repeats 3 times, with 4 second pauses between
 Clinician says it, waits 4 seconds, provides # correct out of 3 attempts.
 * Client will say it again without looking at card.
 * Shuffle 5 cards, then client will say phrases in response to a question from clinician.

Step 4: Repeat steps 1-3 with a different set of 5 stimulus cards

Step 5: Using both sets of cards (10 stimuli total), Client will read written card aloud *(random order).*
- a. Client repeats once
- b-d. Client repeats 3 times, with 4 second pauses between
 Clinician says it, waits 4 seconds, provides # correct out of 3 attempts.

These steps are unique to Rosenbek’s 8-step continuum, but added to this MLG protocol

Scoring*: *(each) production is scored using an 11 point multi-dimensional scale*
- 11 Accurate with LESS than 5 second delay
- 10 Delayed MORE than 5 seconds
- 9 Delay with groping/posturing
- 8 Self-corrects
- 7 Phonemic distortion/s of one or more words with LESS than 5 sec delay
- 6 Phonemic distortion/s of one or more words with MORE than 5 sec delay
- 5 Needs stimuli repeated
- 4 Incomplete. Similar characteristics (e.g., # syllables) but not the target
- 3 Error with LESS than 5 sec delay
- 2 Error with MORE than 5 sec delay
- 1 Perseveration (produces previous response)
- 0 No response

modified scoring suggested by Friedman et al. is different from LaPointe et al.’s scoring
Please use citation:

Set 1:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: In unison</td>
<td>a.</td>
<td>a.</td>
<td>a.</td>
</tr>
<tr>
<td>a.</td>
<td>b.</td>
<td>b.</td>
<td>b.</td>
</tr>
<tr>
<td>b.</td>
<td>c.</td>
<td>c.</td>
<td>c.</td>
</tr>
<tr>
<td>c.</td>
<td>d.</td>
<td>d.</td>
<td>d.</td>
</tr>
<tr>
<td>Step 2: Clinician, 4 seconds, then client</td>
<td>a.</td>
<td>a.</td>
<td>a.</td>
</tr>
<tr>
<td>a.</td>
<td>b.</td>
<td>b.</td>
<td>b.</td>
</tr>
<tr>
<td>b.</td>
<td>c.</td>
<td>c.</td>
<td>c.</td>
</tr>
<tr>
<td>c.</td>
<td>d.</td>
<td>d.</td>
<td>d.</td>
</tr>
<tr>
<td>Step 3: Client reads card</td>
<td>a.</td>
<td>a.</td>
<td>a.</td>
</tr>
<tr>
<td>a.</td>
<td>b.</td>
<td>b.</td>
<td>b.</td>
</tr>
<tr>
<td>b.</td>
<td>c.</td>
<td>c.</td>
<td>c.</td>
</tr>
<tr>
<td>c.</td>
<td>d.</td>
<td>d.</td>
<td>d.</td>
</tr>
<tr>
<td>no card:</td>
<td>no card:</td>
<td>no card:</td>
<td>no card:</td>
</tr>
</tbody>
</table>

To question: To question: To question: To question: To question:

Set 2 (Step 4):

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: In unison</td>
<td>a.</td>
<td>a.</td>
<td>a.</td>
</tr>
<tr>
<td>a.</td>
<td>b.</td>
<td>b.</td>
<td>b.</td>
</tr>
<tr>
<td>b.</td>
<td>c.</td>
<td>c.</td>
<td>c.</td>
</tr>
<tr>
<td>c.</td>
<td>d.</td>
<td>d.</td>
<td>d.</td>
</tr>
<tr>
<td>Step 2: Clinician, 4 seconds, then client</td>
<td>a.</td>
<td>a.</td>
<td>a.</td>
</tr>
<tr>
<td>a.</td>
<td>b.</td>
<td>b.</td>
<td>b.</td>
</tr>
<tr>
<td>b.</td>
<td>c.</td>
<td>c.</td>
<td>c.</td>
</tr>
<tr>
<td>c.</td>
<td>d.</td>
<td>d.</td>
<td>d.</td>
</tr>
<tr>
<td>Step 3: Client reads card</td>
<td>a.</td>
<td>a.</td>
<td>a.</td>
</tr>
<tr>
<td>a.</td>
<td>b.</td>
<td>b.</td>
<td>b.</td>
</tr>
<tr>
<td>b.</td>
<td>c.</td>
<td>c.</td>
<td>c.</td>
</tr>
<tr>
<td>c.</td>
<td>d.</td>
<td>d.</td>
<td>d.</td>
</tr>
<tr>
<td>no card:</td>
<td>no card:</td>
<td>no card:</td>
<td>no card:</td>
</tr>
</tbody>
</table>

To question: To question: To question: To question: To question:
Script Training Procedure

1. Client-generated, relevant topics
2. Client and clinician write short scripts
3. Scripts divided into short phrases for training
4. 45-minute sessions, 2 times per week
5. Practice with tape recording at home 2 times per day, for at least 15 minutes per practice session
6. Script phrases were trained using a cueing hierarchy
7. 3 Scripts were practiced in a cumulative fashion

Cuing Hierarchy

For Acquisition: Block practice
1. Clinician modeled word/phrase
2. Client produced phrase in unison with clinician many times
3. Clinician gradually faded participation
4. Client independently produced phrase with cue card in place, 5-10 times.
5. Client produced phrase independently without cue card 5-10 times

After Stable Production: Random Practice
- Initiated when practice reached <90% accuracy for each phrase
 - Clinician pointed to cue cards in random order
- Random practice in conversation
- Homework: Shuffle cards before practice

Motor Learning References

Please use citation:
learning and how can it help speech? ASHA seminar, Chicago, IL.

Motor Learning References (continued)

Kilduski, N.C., Rice, M.S. (2003). Qualitative and Quantitative Knowledge of Results: Effects on motor
on speech motor learning: A principled approach to treatment for apraxia of speech.
 Aphasiology, 14(5/6), 653-668.
Opinion in Neurology, 19, 84-90.
motor skill learning in adults with Parkinson’s disease: A pilot study. Physical Therapy, 87(9),
1120-1131.
Principles of motor learning in treatment of motor speech disorders. American Journal of
Speech-Language Pathology, 17, 277-298.
Human Kinetics Publishers, Inc.
Speech-Language Pathology, 8(4), 243-247.
Smits-Bandstra, S., De Nil, L., & Rochon, E. (2006). The transition to increased automaticity during finger
Steinhauer, K. & Grayhack, J. (2000). The role of knowledge and results in performance and learning of a
program learning but not parameterization learning. Journal of Experimental Psychology:
Learning, memory, and Cognition, 19(5), 1134-1150.
Youmans, Holland, Munoz, Bourgeois. (2005). Script training and automaticity in two individuals with
Ziegler, W. (2002). Psycholinguistic and motor theories of apraxia of speech. Seminars in Speech and
Language, 23(4), 231-243.