The Aging Voice
From Clinical Symptoms to Biological Realities

Lisa B. Thomas, Doctoral Candidate
Joseph C. Stemple, Ph.D.
University of Kentucky
Voice: The Delicate Balance

Mild changes in each subsystem with age.

Changes can perturb the system & result in an altered voice signal.
Voice Changes with Aging

- Presbyphonia
- Prevalence
 - One of primary etiologies of voice concerns in the elderly (treatment-seeking population)
 - Prevalence in general population of aging adults unknown
 - Preliminary studies suggest prevalence may approach 30% of those over age 65 (Roy et al., 2007)
Presbyphonia

- Auditory Perceptual Changes
 - Altered Pitch - Gender Differences
 - Hoarseness
 - Breathiness
 - Strain
 - Slowed rate
Presbyphonia

- Visual Perceptual Changes
 - Bowing of vocal fold edge
 - Atrophy
 - Spindle-shaped gap
 - Prominence of vocal processes
 - Discoloration
 - Edema (female)
Presbyphonia

- **Acoustic Changes**
 - Increased Fo in males
 - Decreased Fo in females
 - Decreased SPL
 - Increased Noise to Harmonics Ratio
 - Inconclusive findings on changes in jitter and shimmer

- **Aerodynamic Changes**
 - Few studies
 - Suggest maintenance of mean airflow rate
 - Changes in LAR vary
 - May be gender differences
Impact

- Changes often of sufficient magnitude to be recognized by others
- Changes may negatively influence a listener’s perception of an aged speaker
- Impact on functional use of voice and ultimately quality of life
What Underlies Presbyphonia?

- Changes at multiple levels:
 - Subglottic Respiratory Tract
 - Supraglottal Vocal tract
 - Laryngeal / Glottal
What underlies presbyphonia?
Factors external to the larynx

Subglottic Respiratory Tract
- Calcif. of costal cartilages
- Respiratory muscles infiltrated by conn. tissue
- Decreased chest wall compliance & tissue recoil
- Decreased vital capacity
- Increased residual volume

Supraglottic Tract
- Endocranial space increases
- Tongue atrophies
- Muscles of the pharynx (vocal tract) weaken
- Larynx drops in the neck
What underlies presbyphonia?

Laryngeal Factors

- Changes at each major layer
 - Epithelium
 - Lamina Propria
 - Muscle
Epithelium

- Slight change in thickness
- Discoloration
 - Yellowish, Grayish
- Effect on phonation minimal
Lamina Propria: Review

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficial</td>
<td>Gelatinous; Layer of greatest mov’t in vibration</td>
</tr>
<tr>
<td></td>
<td>Primarily non-cellular</td>
</tr>
<tr>
<td></td>
<td>Extracellular Matrix (ECM)</td>
</tr>
<tr>
<td></td>
<td>Fibrous proteins (elastin, collagen, reticular)</td>
</tr>
<tr>
<td></td>
<td>Interstitial proteins (decorin, hyaluronic acid)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Less pliable than LPs</td>
</tr>
<tr>
<td></td>
<td>Primarily non-cellular</td>
</tr>
<tr>
<td></td>
<td>ECM</td>
</tr>
<tr>
<td></td>
<td>Fibrous proteins (elastin most abundant)</td>
</tr>
<tr>
<td></td>
<td>Interstitial proteins (hyaluronic acid, fibromodulin)</td>
</tr>
<tr>
<td>Deep</td>
<td>ECM</td>
</tr>
<tr>
<td></td>
<td>Fibrous proteins (collagen more abundant)</td>
</tr>
<tr>
<td></td>
<td>Interstitial proteins (fibromodulin)</td>
</tr>
</tbody>
</table>
Lamina Propria: Change with Age

- **LP_S**
 - Change in layer thickness (increase/decrease)
 - Fibrous proteins more complex course; altered properties
 - Reduced elasticity

- **LP_I**
 - Less thick (> prominent in males); Change in contour
 - Fibrous proteins (elastin) loose elasticity
 - Layer stiffens

- **LP_D**
 - Fibrous proteins (collagen) more dense; multidirectional course
 - Layer becomes more fibrous
Lamina Propria: Mechanisms of Change

- Metabolic and enzymatic changes
 - Proteins destroyed at a slower rate; slower turnover
 - Older proteins with altered properties remain
- Fibroblast activity levels change
<table>
<thead>
<tr>
<th>Feature</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber Types</td>
<td>I, IIA, IIX
Specialized isoforms in some animal models
Much co-expression
Differs across lat-med dimension</td>
</tr>
<tr>
<td>Arrangement</td>
<td>Mosaic pattern</td>
</tr>
<tr>
<td>Contractile Features</td>
<td>Rapid; speeds exceed limb SM
Fatigue-resistant</td>
</tr>
<tr>
<td>Motor Unit</td>
<td>Small motor units</td>
</tr>
<tr>
<td>Propriocep.</td>
<td>Spindle debated
Mucosal mechanoreceptors</td>
</tr>
</tbody>
</table>
Morphological Changes: TA

Change in muscle cell leading to changes in overall muscle structure & function

<table>
<thead>
<tr>
<th></th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle Fiber</td>
<td>Reduced mass</td>
</tr>
<tr>
<td></td>
<td>? Pattern of fiber loss</td>
</tr>
<tr>
<td></td>
<td>Maintain type II (fast) fiber size</td>
</tr>
<tr>
<td>Connective Tissue</td>
<td>Connective tissue patterns not clearly defined</td>
</tr>
<tr>
<td>Function</td>
<td>Reduced speed</td>
</tr>
<tr>
<td></td>
<td>Reduced force</td>
</tr>
<tr>
<td></td>
<td>Reduced endurance</td>
</tr>
</tbody>
</table>
Mechanisms of Muscle Change

- Primary mechanisms of cellular change with age
 - Neurologic
 - Metabolic
 - Hormonal
 - Physical Activity
Neurologic Mechanisms of Change

<table>
<thead>
<tr>
<th></th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>□ No net loss of RLN fibers</td>
</tr>
<tr>
<td></td>
<td>□ Alterations in myelin sheath</td>
</tr>
<tr>
<td></td>
<td>□ Changes in NMJ (similar to denervation changes)</td>
</tr>
<tr>
<td>Sensory</td>
<td>□ Decreased # and size of SLN nerve fibers</td>
</tr>
<tr>
<td></td>
<td>□ Decreased density of sensory nerve endings</td>
</tr>
<tr>
<td></td>
<td>□ No info on proprioceptive change</td>
</tr>
</tbody>
</table>
Metabolic Mechanisms of Change

<table>
<thead>
<tr>
<th></th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitochondria</td>
<td>- Increased rate of mitochondrial mutation</td>
</tr>
<tr>
<td></td>
<td>- Abnormal accumulation of mitochondria</td>
</tr>
<tr>
<td></td>
<td>- May shift to > glycolytic profile</td>
</tr>
<tr>
<td>Vascular</td>
<td>- Reduced blood flow</td>
</tr>
<tr>
<td></td>
<td>- Reduced capillary surface area</td>
</tr>
</tbody>
</table>
Hormonal Mechanisms of Change

May see shift in the anabolic-catabolic hormone balance in later life.

TA

- Decline in # of sex hormone receptors in larynx with age
- No studies examining shifts in hormone levels with morphological changes in TA
Muscle Change: Summary

- TA remodels with age
 - Muscle atrophy
 - Fiber loss
 - Increase in glycolytic metabolism
 - Increase in mitochondrial abnormalities

- In animal models, above changes alter the muscle’s contractile properties toward a slower, weaker, and less fatigue-resistant profile.
Muscle Change: Summary

- Likely due to changes in the peripheral nerve supply, decreased vascular support, systemic hormonal changes, and stochastic damage.
- Appropriateness of behavioral treatments for reversing the TA’s changes has not been documented.
Current Treatments

- **Surgical**
 - Vocal Fold Augmentation or Medialization
 - Belafsky et al. (2004)
 - Ford & Bless (1986)
 - Isshiki et al., (1996)
 - Effective in short-term. Long-term information limited.
Current Treatments

- **Behavioral**
 - Exercise shown to enhance muscle in limb skeletal muscle
 - Uncertain of effect on laryngeal muscle
 - **Proposed:**
 - Vocal Function Exercises
 - Laryngeal strengthening exercise
 - Studies showing treatment effectiveness with presbyphonia not available
Current Treatment: Summary

- Limited number of treatment options available
- Limited research supporting the use of current methods
- Area ripe for study as population ages
Future Directions in Treatment

- Molecular Biology / Tissue Engineering
 - Ongoing research into restoring lamina propria in cases of VF scar
 - Can similar approaches be applied to the aged VF?
 - Fibroblasts / Myoblasts
 - Can we stimulate fibroblasts to restore the LP?
 - Can we learn from limb muscle studies on myoblasts to facilitate muscle growth and counteract age-related atrophy?
Future Directions in Treatment

- Medical / Hormonal
 - Hormones known to influence muscle
 - Can we control the anabolic-catabolic forces medically to preserve VF muscle?
 - Risk vs Benefit?
Future Directions in Treatment

- Surgical
 - Demonstrate the long-term efficacy of current procedures (augmentation, medialization)
 - Consider application of new approaches, new injectables
Future Directions in Treatment

- Behavioral
 - Efficacy studies on application of behavioral approaches in elderly population
 - Determine mechanism by which exercise results in functional change.
 - Need objective means of measuring the effect of therapies on laryngeal biology
 - Muscle biopsy?
 - Myoblast / fibroblast activity
Future Directions

- Linking the basic and clinical sciences to enhance treatment options for the aging voice
- Dilemma of animal vs. human models of aging
- Realize that the future of voice care for the elderly (and other populations) may involve the SLP, ENT, and basic scientist
Selected References

Selected References

Selected References

Selected References

Selected References

Selected References

Selected References

Selected References