Introduction

► The ability to accurately discriminate and match pitches varies across individuals.
► Nature of differences in these abilities remains unclear.
► A relationship between pitch matching and pitch discrimination abilities has been established (Pitt, 1994; Watts, Moore, McCaghren, 2005).

Purpose

► The purpose of this study was to examine pitch discrimination and pitch matching abilities with three types of stimuli.
 • Participant's own voice
 • Neutral female voice
 • Non-vocal complex tones

Processes involved in Pitch Discrimination and Pitch Matching

► Pitch Discrimination
 • Hearing
 • Memory
 • Attention

► Pitch Matching
 • Hearing
 • Representation in memory
 • Planning/coordination of the vocal mechanism
 • Auditory Feedback

Previous Research

► Various stimulus types have been explored.
 • pure tones
 • computer generated complex tones
 • complex tones generated by musical instruments
 • vocal samples

► None have utilized recorded samples of a participant's own voice.

Auditory Feedback

► Compared to inaccurate pitch matchers, accurate pitch matchers may possess:
 • more finely tuned perceptual systems or
 • utilize different strategies for monitoring auditory feedback of their own vocal production
Research Questions
► Does stimulus type influence pitch discrimination and pitch matching accuracy in musically untrained individuals?
► Are there differences in pitch discrimination and pitch matching accuracy in musically untrained individuals who are accurate and inaccurate pitch matchers, when presented with different stimuli types?

Participants
► 20 females ranging in age from 20 to 30 years
► All participants had normal hearing thresholds
► No history of voice, speech, language, and/or hearing disorders
► No formal vocal musical training

Stimuli
► Non-vocal complex tones:
 - 212 Hz Fundamental Frequency/Reference
 - 200, 206, 212, 218, and 224 Hz
► Neutral female voice condition:
 - 212 Hz Digitally manipulated fundamental frequency
 - 200, 206, 212, 218, and 224 Hz
► Participant’s own voice
 - Fundamental Frequency
 - +50 cent, +100 cent, -50 cent, and -100 cent

Pitch Discrimination Task
► Within each condition: 3 sets of stimuli.
► 3 sets of stimuli - 4 possible combinations:
 - All three stimuli having the same F0
 - The F0 of the first stimulus differing from the second and third stimuli
 - The F0 of the second stimulus differing from the first and third stimuli
 - The F0 of the third stimulus differing from the first and second stimuli

Pitch Discrimination Task Procedures
► Three blocks of 65 stimuli sets
 - non-vocal complex tones
 - neutral female voice samples
 - participant’s voice
► Participant task: determine if the stimuli were the same pitch or if one of the stimuli was different in pitch

Pitch Matching Task
► The stimuli consisted of 15 target stimuli
 - non-vocal complex tones
 - neutral female voice samples
 - participant’s voice
► Participant task:
 - Listen to the target stimulus
 - Vocally match the pitch with the vowel “ah”
Results

Post Hoc Analysis

- Pairwise comparisons indicated a significant difference between the participants’ matching of their own voice and the other two stimuli conditions.
- No significant difference between the neutral female voice condition and the non-vocal complex tone condition.

Discussion

- Own Voice
 - Loudspeaker – Air conduction
 - Production – Bone + air conduction
- Accuracy across stimuli
 - Accurate pitch matchers were generally accurate for all three stimuli types.
 - Inaccurate pitch matchers were most accurate for their own voice.

Implications

- Pitch matching to one’s own voice and to tonal stimuli might indicate the source of singing inaccuracy:
 - Coordination of the vocal mechanism
 - Pitch discrimination
- Using one’s own voice as target stimuli for voice therapy may be beneficial

Thank You.

Are there Questions?