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Preface

In 1968 the U.S. Department of Justice awarded a grant to the Department
of State Police, State of Michigan, for research on methods for identifying a
person by his voice. As a subcontractor under this grant, Stanford Research
Institute was requested to prepare a monograph reviewing past and present
research on all methods of speaker recognition. Reports of experimental studies
in this field appear in professional journals, conference transactions, and gov-
ernmental documents, some of which are not generally available. This mono-
graph catalogs, describes, and evaluates the various techniques of speaker
recognition that have been developed. In order for it to be useful to readers
with different backgrounds, it was written in a tutorial style.

Wherever possible, the monograph uses the terminology found in the litera-
ture. Ambiguous or otherwise unsuitable terms occurring in the literature were
replaced by new terms, and other new terms were created to underline im-
portant distinctions. Studies are described to the extent to which they demon-
strate the principles and measurement of speaker recognition; more studies
were examined than are described. Recommendations for future research are
made throughout the monograph, usually in connection with comments on
specific methodological limitations.

The author gratefully acknowledges the many helpful suggestions he has
received from his colleagues during the preparation of this monograph. In
particular, he thanks Dr. James M. Pickett of Gallaudet College, Dr. Arthur S.
House of Purdue University, Dr. Dorothy A. Huntington of Stanford Univer-
sity, and Dr. Karl D. Kryter, Dr. Frank R. Clarke, Dr. James R. Young, Mr.
Richard W. Becker, and Mr. Fausto Poza of Stanford Research Institute, Dr.
Joan E. Miller of the Bell Telephone Laboratories kindly furnished Figures 8
and 9, and Dr. Victoria A, Fromkin of the University of California, Los Angeles,
provided the photographs appearing in Figures 27 and 28. Figure 11 was pre-
pared from data computed by Mr. John Ohala of the University of California,
Los Angeles. The author assumes complete responsibility for the accuracy of
the material presented.

This monograph is dedicated to Rose Marie.

M.H.L. H.

Menlo Park, California
April 1970
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Abstract

Speaker recognition is defined as any decision-making process that uses the
speaker-dependent features of the speech signal. The origin and nature of
these features are discussed first. This background material is followed by
detailed descriptions of three general methods of speaker recognition. Each
method is illustrated by many experimental studies. Speaker recognition by
listening appears to be the most accurate and reliable method at the present
time. Speaker recognition by visual comparison of spectrograms is used in the
field of criminology, but this method must be studied further to determine its
validity. Speaker recognition by machine is limited by various design short-
comings. More research on this method is expected to improve recognition
performance.



Chapter 1

GENERAL INTRODUCTION

When a person speaks, he produces a complex acoustic signal containing
various kinds of information. This signal serves primarily to convey a lin
guistic message; listeners who are familiar with the language can transcribe,
or at least repeat, what the speaker said. Besides conveying a message, the
speech signal reflects some of the anatomy and physiology of the speaker. For
example, listeners can often determine the speaker’s sex, his approximate age,
his emotional state, and whether or not he is suffering from an illness (such
as the common cold). Of particular interest is the ability of listeners to dis-
tinguish among the speech characteristics of different speakers. This ability
provides the basis for one method of speaker recognition.

For the purposes of this monograph, the term speaker recognition is defined
very broadly. It refers to any decision-making process that uses the speaker-
dependent features of the speech signal. There are two basic recognition tasks,
identification and discrimination. In the identification task, an attempt is made
to identify the speaker of a particular sample of speech. The discrimination task
always involves two speech samples. In this task, a decision is rendered as to
whether the speech samples were produced by the same speaker or by different
speakers. Both recognition tasks have a number of practical applications, one
of which is called speaker authentication (or verification). A speaker is said
to be authenticated if his claimed identity as an individual or as a member of
a group is confirmed by a recognition task.

There are three general methods of speaker recognition. These are speaker
recognition by listening, speaker recognition by visual comparison of spectro-
grams, and speaker recognition by machine. Each of these methods is described
in considerable detail in a separate chapter of this monograph. Speaker recogni-
tion by listening is, of course, the method used in everyday life. It has been
studied for a longer period of time, and appears to be more accurate and
reliable than either of the other methods. A possible limitation of this method
is that it is entirely subjective. No matter how accurate and reliable listeners
may be, they are unable to explain the criteria underlying their decisions.

Speaker recognition by visual comparison of spectrograms is considered to
be a more objective method. Spectrograms are visual displays of the speech
signal; they exhibit graphic features which can be discussed in a fairly objective
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manner. But these features are still interpreted subjectively in arriving at an
overall decision. For this reason, there has been much interest in a third
method, namely speaker recognition by machine. Although machine decisions
are inherently objective, they are often less accurate than comparable human
decisions. Current research efforts in speaker recognition by machine are spe-
cifically directed toward overcoming this limitation.

All methods of speaker recognition are based on the fact that a given word
or phrase tends to be uttered differently by different speakers. There is much
variability in the speech signal, and some of this variability is undoubtedly
related to particular speaker differences. The nature of speaker variability is
discussed in Chapter II. That chapter is included to provide the reader with
an understanding of the principles of speaker recognition.

This monograph is an interpretive survey of the literature on speaker recog-
nition. It consists of descriptions of various methodological factors and many
experimental studies. Most of the experimental studies are critically evaluated
with respect to their design, results, and conclusions. Tutorial material has
been included in order to accommodate readers without an expert knowledge
of speech science.

Hecker: Speaker Recognition 3



Chapter 11

INTERSPEAKER AND
INTRASPEAKER VARIABILITY

A. INTRODUCTION

It is well known that the pronunciation of a given word or phrase tends to
vary from speaker to speaker. Acoustical analyses of utterances by several
speakers typically reveal many dissimilarities. This effect is called interspeaker
(between speakers) variability. Interspeaker variability in the speech signal
can be attributed in part to organic differences in the structure of the vocal
mechanism and in part to learned differences in the use of the vocal mechanism
during speech production (Garvin and Ladefoged, 1963). Organic differences
may be determined by heredity, sex, and age, while learned differences may
be related to geographical, social, and cultural factors.

Not so well known is the fact that the same speaker rarely utters a given
word twice in exactly the same way, even when the utterances are produced
in succession. This is called intraspeaker ( within-speaker) variability. In gener-
ating an utterance, a speaker strives to produce appropriate respiratory, laryn-
geal, and articulatory activity. However, he is unconcerned about the details
of the resulting speech signal because many features of this signal are not
critical to communication.

The success of any method of speaker recognition depends on the degree to
which the sampled interspeaker variability is greater than the sampled intra-
speaker variability. Both forms of variability are extremely difficult to quantify.
Because speaker variability is a reflection of many differences in speech pro-
duction, it cannot be meaningfully expressed in terms of a single measure.
Its measurement requires an understanding of how specific differences in
speech production are manifested in the speech signal, but such an understand-
ing is not yet available.

This chapter consists of two major sections. The first section deals with
the possible sources of speaker variability. The second concerns .experimental
studies which provide direct and indirect evidence of speaker variability. An
appreciation of the relative magnitudes of interspeaker and intraspeaker vari-
ability may be derived from many of these studies.

B. SOURCES OF SPEAKER VARIABILITY
The English language employs an inventory of about 40 different speech
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sounds,! each of which is produced in a particular manner. All speech sounds
are normally uttered in connected speech, but some of them may also be
uttered in isolation. The production of isolated speech sounds has been studied
in considerable detail. For these speech sounds, a generally accepted acoustical
theory of speech production describes the relationship between articulatory
states and features of the corresponding speech signal (Fant, 1960; Flanagan,
1965). A brief summary of this theory will be presented here in order to discuss
the likely sources of speaker variability.

1. Classification of Speech Sounds
The speech sounds are traditionally classified according to how they are

produced (Wise, 1957). As indicated in Table 1, vowels are classified on the

TasLE 1. Phonetic classification of vowels.

Tongue Front-Back Location of Highest Part of Tongue
Height Front Central Back

High i u
1 U
¢ 0
Mid ° > ®
£ A >
x D
Low a a

basis of tongue height and front-back location of the highest part of the tongue.
Thus, [i] and [1] are called high front vowels, [u] and [u] are high back vowels,
and [p] and [a] are low back vowels. The central vowel [5] is of special
interest because of its neutral articulatory position. Vowel production requires
vibration of the vocal folds as a sound source; this activity is termed voicing,
The classification of consonants is shown in Table 2. Consonants are classi-
fied in terms of manner and place of production. Manner of production refers
to how the vocal mechanism is manipulated in order to produce the sound.
This manipulation characteristically either includes or excludes voicing, Fur-
thermore, the manipulation typically involves the forming of a closure or a
narrow constriction in the vocal tract. Stop consonants, for example, are pro-
duced by momentarily interrupting the air flow with a complete closure of
the vocal tract. Fricative consonants, on the other hand, are produced by
constricting a portion of the vocal tract sufficiently to generate turbulent noise.

1The term speech sound usually refers to a phoneme. Occasionally, it refers to features of
the speech signal that give rise to a phoneme percept.

Hecker: Speaker Recognition 5



TABLE 2. Phonetic classification of consonants.

Place of Production

Manner of
Production Bilabial and Palato-
Labiodental Dental Alveolar alveolar  Palatal Velar

Voiceless Stops p t k
Voiced Stops b d g
Voiceless Fricatives f 0 s {
Voiced Fricatives v (] z
Nasals ( Voiced) m n 0
Glides ( Voiced) w j

Retroflex ( Voiced) r
Lateral ( Voiced)

—

Place of production describes the front-back location of the closure or con-
striction in the vocal tract. Bilabial and labiodental consonants, for example,
are produced by closing or constricting the vocal tract either with both lips or
with the lower lip and the upper teeth. Similarly, the production of alveolar con-
sonants involves placing the tongue against the alveolar ridge behind the
upper teeth. Some common English words and their phonetic transcriptions are
listed in Table 3 to help the reader identify each of the speech sounds repre-
sented in Tables 1 and 2.

TasLE 3. List of English words and their phonetic transcriptions.

Word Transcription
rake /rek/
boost /bust/
one /wan/
those /8oz/
yet /iet/
gang /gey/
bath /ba@/
thief /01f/
pull /pul/
vision /vizan/
marshal /marfal/
watchdog /wotfdog/

2. Isolated Utterances of Speech Sounds

Figure 1 shows a midsagittal section through the structures of the head and -
neck that form the vocal mechanism. In a strict sense, the vocal mechanism also

6 ASHA Monographs No. 16 1971



Ficure 1. Diagrammatic midsagittal sec~
tion of vocal mechanism during production
of vowel [u]. Structures shown include (1)
pharyngeal cavity, (2) oral cavity, (3) nasal
cavities, (4) tongue mass, (5) soft palate,
and (6) vocal folds.

includes the entire respiratory system, which provides the air stream that drives
the vocal folds. The vocal tract consists of the pharyngeal cavity and the oral
cavity. The illustrated configuration of the vocal tract is appropriate for the
production of the vowel [u].

Vowel production may be described with reference to Figure 2. When the
vocal folds are set in vibration, they create a source of acoustic energy. This
source is called the glottal source; the glottis is the narrow opening between the
vocal folds. The waveform of the glottal source consists of a sequence of pulses.
One pulse occurs during each vibratory cycle of the vocal folds, and the number
of pulses generated per second determines the fundamental frequency of the
voice. A typical adult male has a median fundamental frequency in the range
100-150 Hz. The detailed shape of the pulses is influenced by many anatomical
and physiological factors, including the dimensions of the vocal folds, control
of the laryngeal muscles, and intensity of voicing (vocal effort). These factors
tend to differ among speakers. Even for a particular speaker, several factors
can differ considerably from utterance to utterance. Thus, the glottal wave-
form can contribute to both interspeaker and intraspeaker variability.

The spectrum of the glottal source consists of many frequency components,
or harmonics. The first harmonic is the fundamental frequency, and the higher
harmonics occur at multiples of the fundamental frequency. There is a con-
siderable reduction in the amplitude of each succeeding harmonic. The vocal
tract modifies the glottal spectrum in accordance with its properties as an

2Itis dpossible to derive the glottal waveform from a knowledge of the time-varying glottal
area and the subglottic air pressure (Flanagan, 1958). The glottal area may be measured by
means of high-speed motion pictures of the vibrating vocal folds. The subglottic pressure
may be measured by a rubber balloon that is positioned in the esophagus.

Hecker: Speaker Recognition 7
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Ficure 2. Acoustical deseription of vowel production.

acoustic resonator. In transferring acoustic energy from the glottis to the lips
of the speaker, the vocal tract selectively emphasizes certain portions of the
glottal spectrum. The resonant properties of the vocal tract are independent
of the fundamental frequency. They may be described by what is called the
vocal-tract transfer function.®

3The transfer function of an acoustic resonator is a mathematical description of the rela-
tionship between any input signal and the resulting output signal.
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The vocal-tract transfer function exhibits several peaks that correspond to
the natural frequencies of the vocal tract; these peaks are referred to as for-
mants. Each formant is characterized by a center frequency, a relative ampli-
tude, and a bandwidth. The formant frequencies and amplitudes depend
greatly on the configuration of the vocal tract (Stevens and House, 1961).
In this manner, the vocal-tract transfer function reflects the identity of a specific
vowel. The formant bandwidths are almost independent of the vocal-tract
configuration. They represent energy losses in the vocal tract, including radia-
tion from the mouth, absorption by the walls of the vocal tract, and radiation
through the glottis into the trachea and lungs.

Approximate formant frequencies for six vocal-tract configurations that are
associated with specific vowels are given in Table 4. In general, the frequency

TasLE 4. Approximate formant frequencies tor vocal-tract configurations associated with
specific vowels. Data are typical for isolated utterances of vowels from adult male speakers.

Formant Frequency (Hz)

Vowel

Fl r2 F3
2 500 1500 2500
[i] 250 2000 3000
[e] 500 1750 2500
[a] 750 1250 2500
[o] 500 750 2500
[u] 250 750 2000

of the first formant (F1) is low for high vowels (see Table 1) and high for low
vowels, and the frequency of the second formant (F2) is low for back vowels
and high for front vowels. Usually, the frequency of the third formant (F3)
provides further differentiation among the vowels. The vocal-tract configura-
tions represented by the tabulated data are used only for isolated utterances
of the respective vowels. In connected speech, the vowels are produced with
less extreme vocal-tract configurations. Thus, the formant-frequency values for
a given vowel produced in connected speech are closer to the values for the
neutral vowel [2].

The vocal-tract transfer function also reflects individual differences in the
dimensions of the vocal tract. For example, the exact formant frequencies for
a given vowel uttered by a particular speaker are indicative of vocal-tract
length, Low formant-frequency values signify a relatively long vocal tract,
whereas high values signify a shorter vocal tract (Stevens and House, 1961 ).
Similarly, the exact formant bandwidths would be expected to differ among
speakers, Different vocal tracts presumably have different energy losses. How-
ever, formant bandwidths are difficult to measure (Dunn, 1961), and their
contribution to speaker variability has not been examined.

The spectrum existing at some distance in front of the speaker is called the

Hecker: Speaker Recognition 9



speech spectrum. This spectrum includes the effects of the glottal spectrum and
the vocal-tract transfer function.* The speech waveform consists of a sequence
of damped oscillations, each of which is initiated at the instant of glottal clo-
sure. A computerized procedure has been developed for recovering the glottal
waveform from the speech waveform (Mathews, Miller, and David, 1961).
The speech signal is processed by a variable filter which is adjusted to exactly
cancel the effect of the vocal-tract transfer function. This procedure, called
inverse filtering, is carried out in synchronism with the fundamental frequency.

Voiceless fricative consonants are produced by forming a narrow constriction
in the vocal tract and forcing air through this constriction at a high velocity.
The front-back location of the constriction (referred to as place of production
in Table 2) depends on the particular fricative. To produce the fricative [s],
for example, the constriction is formed by placing the upper surface of the tip
of the tongue against the alveolar ridge. This articulatory configuration is
shown in Figure 3.

Ficure 3. Diagrammatic midsagittal sec-
tion of vocal mechanism during production
of fricative consonant [s]. Structures are
identified in Figure 1.

The air flow becomes turbulent in the vicinity of the constriction, and this
creates an acoustic source of random noise. The noise spectrum, which extends
uniformly over a wide frequency range, is modified by a vocal-tract transfer
function that exhibits several peaks and a few abrupt depressions (Heinz and
Stevens, 1961). As in the case of vowel production, the peaks correspond to
the natural frequencies of the vocal tract.> The depressions are attributable to

4The speech spectrum also includes a high-frequency emphasis that is due to acoustic
radiation ?rom the mouth into the air.

5The vocal-tract configurations associated with voiceless fricatives represent higher energy
losses than the vocal-tract configurations associated with vowels. There are losses at the

10 ASHA Monographs No. 16 1971



acoustical cancellation by the portion of the vocal tract behind the noise source.
They reflect the location and the dimensions of the constriction in the vocal
tract. Since different speakers undoubtedly form slightly different constrictions
to produce the same fricative, the exact frequencies and bandwidths of these
depressions are likely to contribute to interspeaker variability.

The production of voiced fricative consonants is similar to the production of
voiceless fricative consonants, except that the glottal source is in use. Voiced
and voiceless fricatives having a common place of production are produced
with very similar vocal-tract configurations.

Nasal consonants are produced by coupling the nasal cavities to the vocal
tract, closing the vocal tract in front of the point of coupling, and using the
glottal source. To couple the nasal cavities to the vocal tract, the back of the
soft palate is lowered. The location of the vocal-tract closure (place of produc-
tion) depends on the particular consonant. For the consonant [m], the vocal
tract is closed at the lips; for [n], the closure is formed by pressing the tongue
against the alveolar ridge; and for [p], the closure is formed by touching the
back of the tongue to the lowered soft palate. A midsagittal section of the
vocal mechanism during the production of the consonant [n] is shown in
Figure 4.

Ficure 4. Diagrammatic midsagittal sec-
tion of vocal mechanism during production
of nasal consonant [n]. Structures are iden-
tified in Figure 1.

The glottal spectrum is modified by a transfer function that describes the
acoustical path between the glottis and the nostrils of the speaker. This transfer
function exhibits both peaks and abrupt depressions (Fujimura, 1962), The

constriction and also at the vocal folds, which are partially abducted. For this reason, the
formant bandwidths tend to be greater in the case of voiceless fricatives.

HECKER: Speaker Recognition 11



peaks correspond to the natural frequencies of the vocal mechanism, including
the nasal cavities.® Assuming that the dimensions of the various parts of the
vocal mechanism differ from speaker to speaker, the frequencies and band-
widths of the peaks should be speaker dependent. The depressions are attribu-
table to acoustical cancellation by the closed oral cavity; they reflect the
location of the closure. Thus, the depressions are also expected to contribute
to speaker variability.

3. Connected Speech

The preceding section has described how various speaker differences are
likely to be reflected in isolated utterances of vowels, fricative consonants, and
nasal consonants. Speaker differences are expected to have an even greater
effect on the production of connected speech. Both organic and learned dif-
ferences may influence the speech signal (Garvin and Ladefoged, 1963).
While organic differences presumably affect each individual speech sound,
learned differences are probably reflected in transitions from one speech sound
to another, and in patterns of fundamental frequency, overall amplitude, and
speaking rate.

As mentioned earlier, the vocal-tract configurations used to produce vowels
in connected speech are more neutral than the vocal-tract configurations used
for isolated utterances of vowels. Since the articulatory structures are con-
tinuously in motion, they do not have time to form extreme vocal-tract con-
figurations. The formant-frequency values listed in Table 4 may be viewed as
target values that are not fully reached when the vowels are produced in
connected speech. These target values, and the degree to which they are
reached in specific consonantal environments, are highly speaker dependent.

In connected speech, each speech sound is more or less affected by the pre-
ceding and following speech sounds because articulatory configurations cannot
be changed instantaneously. For example, the duration and formant structure
of a given vowel in a consonant-vowel-consonant utterance depend not only
on the identity of the vowel but also on the particular consonants, Such context-
dependent modifications of speech sounds are called coarticulation effects.
Superimposed on the coarticulation effects is interspeaker and intraspeaker
variability. The excursions and relative timing of the many articulatory adjust-
ments required for the pronunciation of a given word vary among speakers
and utterances.

During the production of connected speech, vowels occurring in the vicinity
of nasal consonants may be nasalized. Coupling the nasal cavities to the vocal
tract may affect the vowel spectrum in several respects. Since there is now
an additional energy loss in the vocal tract, the formant bandwidths may be
increased. The nasal cavities may also provide acoustical cancellation and thus

6Because of high energy losses in the nasal cavities, the peaks have relatively large band-
widths
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introduce abrupt depressions at particular frequencies. These effects of the
nasalization of vowels are likely to be more pronounced for some speakers
than for others.

In analyzing connected speech, it is often difficult to separate coarticulation
effects from speaker variability. For example, the acoustical characteristics of
stop consonants are determined both by the context in which the consonants
occur and by the manner in which the speaker has learned to coordinate his
respiratory, laryngeal, and articulatory activities.

The linguistic description of spoken English includes the so-called prosodic
features of speech, intonation and stress. Both of these features can serve to
make the semantic contents of an utterance more specific. A change in intona-
tion may turn a statement into a question. Stress selectively emphasizes the
syllables represented by an utterance, and this may lead to a unique interpreta-
tion. It is important to realize that intonation and stress are linguistic concepts
and not acoustic entities. Each prosodic feature has many acoustical correlates,
such as variations in fundamental frequency, overall amplitude, spectral bal-
ance, and speech-sound duration. The acoustical correlates of intonation and
stress are not yet fully understood, but they appear to be highly speaker
dependent.

C. EXPERIMENTAL EVIDENCE OF SPEAKER VARIABILITY

1. Evidence of Interspeaker Variability

Expgriments concerned with the recognition of speech by machine provide
clear evidence of the presence of interspeaker variability. Speech recognizers
generally require different adjustments for different speakers in order to main-
tain an optimal level of performance. In the first such machines, these adjust-
ments were made manually and largely by trial and error. The feasibility of
incorporating automatic adjustment schemes into more sophisticated machines
is currently being studied.

For example, the computer-simulated machine of Hemdal and Hughes
(1967) has been modified to adapt automatically to the speech characteristics
of different speakers (Hemdal, 1967). This machine operates by detecting the
acoustical correlates of the so-called distinctive features of speech.” The digi-
tized output of a conventional spectrum analyzer is processed by a distinctive-
feature classification routine to select time segments that represent vowels.
For each of these time segments, the frequencies of the first three formants
(F1, F2, and F3), and the duration of the sound in which the time segment
occurs, are measured. Table 5 and Figure 5 show how these measurements are
then used to label each time segment as representing a particular vowel. The

7The concept of the distinctive features is that each speech sound (phoneme) may be
uni%uely specified by a small number of binary decisions about basic phonological states
(Jakobson, Fant, and Halle, 1963).
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TaBLE 5. Acoustical correlates of distinctive features used for vowel recognition.

Distinctive Feature Acoustical Correlate
Acute/Grave High F2/Low F2
Compact/Diffuse High F1/Low F1
Flat/Plain F1 + F2 < Threshold/F1 + F2 >
Threshold
Tense/Lax Longer duration, farther from a

neutral position in F1-F2 plane/
Shorter duration, closer to neutral
position

distinctive-feature boundaries and the neutral position shown in Figure 5 are
shifted for each new speaker according to the results of a preliminary analysis

of several utterances.

As mentioned in Section B3, interspeaker variability may be superimposed
upon coarticulation effects. Using a speech-analysis procedure developed by

DIFFUSE | COMPACT
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FREQUENCY OF SECOND FORMANT (F2)
1900 Hz

ACUTE
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PLAIN
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500 Hz
FREQUENCY OF FIRST FORMANT (FI)

Fieure 5. Formant-frequency plane showing distinctive-
feature boundaries used for vowel recognition, (Reprinted,
by permission, from Hemdal and Hughes, 1967.)
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Bell, Fujisaki, Heinz, Stevens, and House (1961), Stevens, House, and Pal{l
(1966) measured formant frequencies at many points in time throughout vari
ous consonant-vowel-consonant utterances. Three adult male speakers partici-
pated in this study; they differed with respect to physical height and therefore
presumably also with respect to vocal-tract length. For each speaker, the con-
tour of the second-formant frequency during the vocalic portion of the syllable
/did/ is shown in Figure 6. The arrows to the right of the figure indicate the
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Ficurk 6. Second formant-frequency contours for vocalic portion of syllable /did/
uttered by three speakers. Arrows indicate second-formant frequencies for isolated
utterances of vowel [1]. (Reprinted, by permission, from Stevens et al., 1966.)

respective target values of the second-formant frequency (i.e., the values for
isolated utterances of the vowel [1]). As was expected, the shortest speaker
(J. M.) produced the highest target value, and the tallest speaker (K. S.)
produced the lowest target value. There was considerable variability in the
degree to which the target values were reached, in vowel duration, and in the
symmetry of the contours. The variability at the consonant-vowel and vowel-
consonant boundaries was generally found to be greater than the variability
at the midpoint of the vowel.

There is some evidence that the interspeaker variability exhibited in isolated
utterances of a vowel is basically independent of the particular vowel. A study
by McGee (1965) employed spectrographic sections (amplitude-frequency
plots) that represented the vowels [i] and [5] as uttered by 19 male speakers.
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Each section was divided into 34 frequency bands, and an energy level was
estimated for each band. A 19 x 34 data matrix was formed for each vowel;
also, by averaging the data matrix over speakers, a 1 x 34 vowel matrix was
calculated. The vowel matrix was then subtracted from the data matrix to
obtain a residual matrix which was assumed to describe the speaker charac-
teristics associated with the vowel. A statistical analysis demonstrated that the
two residual matrices were extremely similar. It was concluded, therefore, that
the individual differences exhibited in the utterances of the vowel [i] were
equivalent to the individual differences exhibited in the utterances of the
vowel [5].

Several factors appear to influence interspeaker variability. In a given
experiment, the participation of speakers with certain speech pathologies (e.g.,
dysphonia or dysarthria), neuropathologies (e.g., cerebral palsy or Parkinson-
ism), psychopathologies (e.g., hysteria or depression), or unique linguistic
backgrounds (e.g., early exposure to a regional dialect or foreign language)
may be expected to increase interspeaker variability because of the greater
organic and learned differences. Similarly, interspeaker variability tends to be
reduced for groups of speakers whose organic and learned differences are small.
Organic differences are presumably minimal in the case of identical twins;
there is evidence that the long-term speech spectra of monozygotic twins are
more similar than the spectra of either dizygotic twins or sex- and age-matched
nontwin pairs (Alpert, Kurtzberg, Pilot, and Friedhoff, 1963).

The effects of both genetic and environmental factors may be studied by
comparing speech samples from different members of a family. Kersta (1965a)
conducted several experiments that employed speech samples from three mem-
bers of each of eight families, the tather, the mother, and a 5- or 6-year old son.
Each family member produced four normal and four whispered utterances
of the sentence You and I were there. A spectrogram® was prepared for each
utterance, and spectrograms representing either normal or whispered utterances
of a particular word were compared by trained observers who attempted to
match sons with parents and husbands with wives. The results of this study,
shown in Table 6, indicate that whispered speech provides a higher matching
accuracy than normal speech. The similarity of spectrograms for sons and
parents can be explained in terms of the obvious genetic factor and the family
environment. While the similarity of spectrograms for husbands and wives can
be attributed primarily to environmental factors, remote genetic factors may
also be involved. A person of a given race, height, and age is likely to marry
someone of the opposite sex with a similar description.

2. Evidence of Intraspeaker Variability

Experiments concerned with speaker recognition by machine provide evi-

8A spectrogram is a visual amplitude-frequency-time display of the speech signal. The
preparation and use of spectrograms will be described in Chapter IV,
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TaBLE 6. Results of spectrogram-matching experiments, averaged over five words. Match-
ing accuracy attributable to chance is 2.8%.

Matching Accuracy (%)

Experiment Normal Whispered
Speech Speech
Sons Matched with Fathers 18.0 21.0
Sons Matched with Mothers 13.0 17.5
Sons Matched with Both Parents 15.0 28.0
Husbands Matched with Wives - 23.0

dence of the presence of intraspeaker variability. These experiments will be
described in considerable detail in Chapter V. Regardless of the techniques
employed, machines can perform either an identification task or a discrimina-
tion task. In the identification task, an utterance from the speaker to be iden-
tified is converted into a test pattern which is compared with a number of
reference patterns. Each reference pattern is constructed from several utter-
ances by a particular speaker, and one reference pattern represents the speaker
to be identified. For identification, the test pattern is associated with the most
similar reference pattern. Hargreaves and Starkweather (1963) found that
more incorrect identifications are made when the utterances represented by
the test and reference patterns are recorded on different days than when they
are recorded on the same days. This observation constitutes evidence of day-
to-day variations in the speech of individual speakers.

In the discrimination task, the test pattern is compared with a single refer-
ence pattern, and a decision is made as to whether both patterns represent the
same speaker. According to the results of a study by Li, Dammann, and Chap-
man (1966), performance can be optimized by constructing the reference
pattern from utterances which are not all recorded at the same time. Such a
reference pattern incorporates more of the intraspeaker variability that is
sampled by the test pattern,

Several factors may influence intraspeaker variability. One such factor is
psychological stress. In a study by Hecker, Stevens, von Bismarck, and Williams
(1968), stress was induced in experimental subjects by having them carry out
an arithmetic task under time pressure. Verbal responses involving test phrases
were obtained under stress and control conditions, and acoustical analyses of
these responses indicated that the speech of many subjects was modified by
stress. Most of the changes were attributable to differences in the amplitude,
frequency, and detailed shape of the glottal pulses. Other changes resulted from
differences in articulation.

The speech signal also reflects aging. Mysak (1959) found that aging is
often accompanied by a rise in median fundamental frequency, a greater vari-
ability in fundamental frequency, and a slight reduction in speaking rate. The
rise in fundamental frequency was attributed to physiological changes in the
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larynx and also to psychological factors precipitated by social and economic
changes. In a similar study by Ptacek, Sander, Maloney, and Jackson (1966),
advanced age was found to be associated with a reduced range of fundamental
frequency, a lower maximum vowel intensity, and a less rapid articulation.
It was speculated that the reduced range of fundamental frequency is caused
by aging of the laryngeal cartilages and muscles.

Another factor which may influence intraspeaker variability is disease.
Various diseases of the chest, the larynx, and the central nervous system are
known to affect particular aspects of speech production. Many disease processes
are characterized by alternating periods of remission and relapse, and the
speech signal may be modified accordingly.

It may be possible to devise techniques for reducing intraspeaker variability
within a given experiment or other restricted situation. Techniques that reduce
intraspeaker variability more than they reduce interspeaker variability would
be expected to improve the reliability of speaker recognition. Kurtzberg, Alpert,
and Friedhoftf (1963) suggested a technique that requires each speaker to
match his fundamental frequency to a standard tone and the intensity of his
voice to an intensity standard. Obviously, this technique is only applicable in
situations where the speakers are highly cooperative.

3. Further Evidence of Speaker Variability

Both interspeaker and intraspeaker variability are displayed in the spectro-
grams in Figure 7. These spectrograms show how the properties of the speech
signal change with time. Frequency is plotted vertically, time horizontally,
andirelative amplitude is indicated by the darkness of the mark. Various por-
tions of the spectrograms exhibit distinct spectral features. A rapid sequence
of pulses occurs whenever the vocal folds are vibrating. The dark energy bands
appearing during these intervals of vocal-fold vibration are the formants.
Intervals with randomly fluctuating energy above 4 kHz represent fricative
consonants, and narrow (50-100 msec) cnergy gaps are related to the produc-
tion of stop consonants. Since the spectrograms portray different utterances of
the same phrase, each spectral feature of one utterance has a grossly similar
counterpart in another utterance. The variability in corresponding spectral
features seems to be somewhat greater between the two speakers (interspeaker
variability ) than between the two utterances by the same speaker (intraspeaker
variability).

As mentioned earlier, differences in the operation of the glottal source may
contribute to speaker variability. It is difficult to appraise the significance of
this contribution by examining spectrograms because spectrograms do not
display glottal-source characteristics directly. Miller and Mathews (1963) ex-
tracted the glottal waveform from the speech signal by means of inverse
filtering, An improved version of the technique developed by Mathews, Miller,
and David (1961) was used to analyze isolated utterances of vowels from six
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Ficure 7. Sound spectrograms of three utterances of the phrase Machine recognition of
speech. (Reprinted, by permission, from Young and Hecker, 1968.)

male speakers. Some typical results are illustrated in Figure 8. The left column
shows data for four vowels uttered by the same speaker, and the right column
shows data for a single vowel uttered by four speakers. Each utterance is
represented by a portion of the speech waveform and by the corresponding
portion of the glottal waveform.

The observation that the glottal waveform is similar for different vowels
uttered by the same speaker suggests a relatively low intraspeaker variability.
That the glottal waveform varies from speaker to speaker even though all
speakers uttered the same vowel suggests a relatively high interspeaker vari-
ability. Thus, the glottal waveform would appear to be a valuable descriptor
for differentiating among speakers. However, the glottal waveform also varies
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Ficure 8. Waveforms of speech signal (upper traces) and glottal source (lower traces)
for four vowels produced by Speaker LJG and for vowel [a] produced by four speakers.
(Reprinted, by permission, from Miller and Mathews, 1963.)

with the intensity of voicing ( vocal effort) and with the fundamental frequency.
These effects are illustrated in Figure 9. With a decrease in intensity or an
increase in fundamental frequency, the interval during which the glottis is
open tends to become a larger portion of the vibratory cycle. Therefore, in
order to use the glottal waveform as a basis for speaker recognition, its ampli-
tude and period must be taken into account.
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Ficure 9. Waveforms of speech signal (upper traces) and glottal source (lower traces)
for nine utterances of vowel [a] produced by Speaker JCT at various levels of intensity and
fundamental frequency. ( Reprinted, by permission, from Miller and Mathews, 1963.)
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INTENSITY

Miller (1964) studied the relative importance of the vocal-tract transfer
function and the glottal-source characteristics in speaker recognition by listen-
ing. Using inverse filtering, these two components of the speech signal were
separated for short utterances by several speakers and then recombined so that
the vocal tract of one speaker was effectively modulating the glottal source of
another speaker (or an artificial source). Listeners consistently associated the
hybrid utterances with the speaker whose vocal tract was represented. In other
words, the vocal-tract transfer function appeared to carry more information
about a speaker than the glottal-source characteristics. This study will be
described in greater detail in Chapter III.
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4. Studies of Physiological Activity

For purposes of speaker recognition, the speaker variability observed in the
speech signal is of greater interest than the physiological differences that give
rise to this variability. All methods of speaker recognition employ some form
of analysis of the speech signal, and physiological measures are generally not
available. However, studies of physiological activity are valuable in that they
may lead to a better understanding of the nature of speaker variability. Such
studies may provide further means for estimating the relative magnitudes of
interspeaker and intraspeaker variability.

Hirano and Smith (1967) recorded the electrical activity in several articu-
latory muscles of four speakers. These investigators used bipolar, thin-wire
electrodes that were injected directly into the muscle tissues. The placement of
the electrodes for recording from the anterior portion of the genioglossus muscle
and from the mylohyoid muscle is illustrated in Figure 10. Various consonant-

Ficure 10. Diagrammatic midsagittal (a) and coronal (b) sections of floor of mouth,
indicating positions of electrodes. Structures shown include (1) tongue mass, (2) mandible,
(3) hyoid bone, (4) genioglossus muscle, (5) geniohyoid muscle, and (6) mylohyoid
muscle. (Adapted, by permission, from Hirano and Smith, 1967.)

vowel-consonant syllables served as the speech material; these syllables were
singly embedded in a suitable carrier phrase. Each item was uttered at least
ten times in succession. A small computer was used to average the recorded
action potentials over several utterances and to smooth and display the com-
bined data.

Some typical results are presented in Figure 11. For each speaker, two traces
are shown for a given muscle. These traces were obtained by averaging the
action potentials over two different sets of five utterances. Thus, both inter-
speaker and intraspeaker differences may be observed in these physiological
data. The traces for the genioglossus muscle appear to be characterized by
one central prominence for Speaker GA, by two prominences for Speakers JO
and GP, and by three prominences for Speaker TS. For a given speaker, how-
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Ficure 11. Electrical activity in genioglossus and miylohyoid muscles of four sFeakers

during groductlon of nonsense syllable /kak/. For each speaker, action potentials were
averaged and smoothed over two sets of five utterances.
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ever, the two traces are fairly similar. All traces for the mylohyoid muscle are
characterized by two prominences, but again the interspeaker differences seem
to be greater than the intraspeaker differences. To the extent that the electrical
activity in these muscles is related to articulatory behavior, and to the extent
that such behavior is, in turn, reflected in the speech signal, the interspeaker
variability would be expected to exceed the intraspeaker variability. This pre-
diction thus agrees with other estimates of the relative magnitudes of the two
forms of speaker variability that are based on acoustic measures.
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Chapter 111

SPEAKER RECOGNITION BY LISTENING

A. INTRODUCTION

Research on speaker recognition by listening has several interrelated objec-
tives. One objective is to determine the variables which affect listener per-
formance and to develop test formats for controlling these variables. A second
objective is an understanding of the perceptual bases of speaker recognition.
It has been postulated that listeners use a small number of perceptual param-
eters in differentiating among voices; attempts have been made to define and
measure these parameters. A third objective is knowledge of the acoustical
manifestations of speaker identity. By modifying the speech signal in a selective
manner and noting the effect on listener performance, it is often possible to
determine what acoustical features carry information about the identity of the
speaker. A fourth objective is to use speaker-recognition tests for evaluating
communication systems. Each of these topics will be discussed in this chapter.
Also, because of a long-standing concern about the reliability of the human
listener, there will be a discussion of listener fallibility.

B. VARIABLES OF SPEAKER RECOGNITION

Several kinds of tests have been devised to study different aspects of speaker
recognition by listening. All tests employ the same basic procedure: speakers
drawn from a prescribed population are recorded reading selected speech
material, the recordings are edited and presented to listeners, and the listeners
carry out a recognition task. Each step in this procedure introduces many
variables which can influence the resulting performance measure. It is the
function of the test format to provide control over these variables so that they
can be studied individually. The most important variables will now be de-
scribed in detail,

1. Size and Homogeneity of Speaker Group

Recognition performance is found to be inversely related to the size of the
speaker group. Using a test in which the listeners learn to associate a number
with each of several unfamiliar speakers, Williams (1964) trained three groups
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of listeners with groups of four, six, and eight speakers. After considerable train-
ing, the listeners working with the four- and six-speaker groups achieved above
60% correct identification, while the listeners working with the eight-speaker
group barely achieved 40% correct identification. It was concluded that a
group of five or six speakers may be optimal for this kind of test. Other tests
have employed larger speaker groups.

The level of performance also depends on the homogeneity of the speaker
group. Homogeneity refers to the perceptual similarity of the voices heard in a
given test. In evaluating communication systems with five quartets of speakers,
Stuntz (1963) found that some quartets consistently produced lower scores
than other quartets. On the basis of this finding, the former quartets were
considered to be more homogeneous. Within a particular speaker group, the
incorrect identities assigned to each speaker are usually not equally distributed
over all of the remaining speakers. Such confusions tend to involve certain
speakers, and these speakers are presumed to form a homogeneous subset with
the incorrectly identified speaker. Thus, homogeneity has been inferred to exist
both between and within speaker groups.

Various perceptual and physical measures have been employed as indicators
of the homogeneity of a speaker group. Although the correlation between these
measures and recognition performance is relatively poor, the measures have
been used to select speakers and to describe particular speaker groups. Car-
bonell, Grignetti, Stevens, Williams, and Woods (1965) based their selection
of speakers on voice-attribute ratings which were obtained from expert
listeners. The rated attributes included regional accent, articulatory precision,
nasal resonance, and a number of attributes specified by semantic-differential
scales.! The average ratings of the individual attributes were not found to be
related to the observed confusions among the selected speakers. Silbiger (1966)
proposed a similar method for selecting speakers and classifying voices.

Among the physical measures that have been employed as indicators of
homogeneity are direct measures of the speech signal. Compton (1963) de-
termined the fundamental frequency of isolated utterances of the vowel [i] by
several speakers and found that speakers with similar ranges of fundamental
frequency were often confused by the listeners. Indirect physical measures
have also been used. Stevens, Williams, Carbonell, and Woods (1968) esti-
mated the length of the vocal tract of each speaker from a profile photograph
of the speaker. As mentioned in Chapter II, the length of the vocal tract affects
the formant frequencies. .

2. Selection of Speech Material

Performance is also influenced by the speech material. The most important

1A semantic-differential scale is a psychophysical scale that is defined at its endpoints by
adjectives of opposite meaning, e.g., pleasant-unpleasant (Osgood, Suci, and Tannenbaum,
1957).
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requirement of the speech material is that it must allow an adequate sampling
of each speaker’s phonetic repertoire. This requirement is usually expressed
in terms of the duration of the speech samples. As shown in Figure 12, when
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Ficure 12, Transmission of speaker identity as a func-
tion of duration of speech sample. Data are shown for
normal and whispered speech. (Reprinted, by permission,
from Pollack et al., 1954.)

the duration of a sample of normal speech exceeds 1 sec, there is almost no
further improvement in performance; a sample of whispered speech must have
a duration of at least 3 sec before maximum performance is reached (Pollack,
Pickett, and Sumby, 1954). This difference in duration illustrates the contribu-
tion of voicing to speaker recognition.

Bricker and Pruzansky (1966) conducted experiments employing sentences,
disyllables, monosyllables, consonant-vowel excerpts, and vowel excerpts. Their
results indicate that performance depends on the number of phonemes con-
tained in the speech sample rather than on the duration of the sample per se.
Williams (1964) obtained significantly higher scores for sentence tests than for
tests consisting of monosyllables. Stevens, Williams, Carbonell, and Woods
(1968) also obtained higher scores for phrases and disyllables than for mono-
syllables. Clarke, Becker, and Nixon (1966) used sentences containing from 3
to 11 syllables; performance was not significantly influenced by the number of
syllables. Considering that the duration of a three-syllable utterance may easily
approach 1 sec, this finding is not at variance with the data shown in Figure 12.
Compton (1963) constructed a test from vowel segments of different duration
and concluded that 500-750 msec is the optimal range of duration for this kind
of speech sample.
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3. Size and Training of Listener Group

The ability to recognize speakers varies from listener to listener. If only a few
listeners participate in a given test, the average score will depend greatly on
their particular abilities. As the number of listeners is increased, this depen-
dence is reduced, and the test results become more useful for making compari-
sons between experiments using different listeners. Thus, the size of the
listener group can have an appreciable effect on performance. Although this
effect has not been studied specifically, most investigators have used at least
ten listeners. An even larger listener group may be necessary in order to obtain
generally meaningful results.

Williams (1964) studied the requirements for training listeners with a group
of six unfamiliar male speakers. One experiment consisted of a series of
training trials; each speaker read two sentences during a given trial. The
listener responded to each sentence by operating one of six push buttons repre-
senting the six speakers. Following his response, a small light was flashed above
the button that should have been pushed for correct speaker identification.
Eight training trials were required for the average score for 16 listeners to
reach above 50%. In another experiment, Williams compared two methods of
training listeners. One was the push-button method described above. In the
second method, each speaker was represented by a number from one to six, and
the listener responded by writing down one of these numbers. The correct
speaker number was announced after each response. No significant difference
was found between these two methods of training. The write-down method has
the advantage that the test can be administered to many listeners at the same
time.

4. Mode of Presentation of Speech Material

Two modes have been used to present the speech material to the listeners: a
fixed-sequence mode and a free-comparison mode. In the fixed-sequence mode,
the speech samples to be compared by the listener are arranged in a fixed
temporal order that is determined entirely by the experimenter. Each test item
typically consists of a sequence of several speech samples. When the sequence
contains more than two speech samples, the first sample may be from the
speaker to be identified, and the following samples may be response alterna-
tives. In the free-comparison mode, the listener controls the presentation of
speech samples. Each test item consists of a limited time interval during which
several speech samples are continuously available to the listener. The listener
is provided with a switch allowing him to hear the available samples, one after
another, in any desired order. He can spend different amounts of time on the
individual samples, and within the overall time limit he can usually switch
back to particular samples before responding.

Williamson (1961) compared the fixed-sequence and free-comparison modes
of presentation for test items involving only two speech samples. Listeners
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were required to state whether the two samples were uttered by the same or
by different speakers. The fixed-sequence mode produced considerably higher
scores than the free-comparison mode. When the time interval of each test item
in the free-comparison mode was increased from 5 sec to 10 sec, there was a
slight improvement in performance. However, it cannot be concluded that the
fixed-sequence mode is generally superior to the free-comparison mode. As will
be explained later, short-term memory effects make the fixed-sequence mode
appear less attractive when the number of speech samples per test item is
large. Such memory effects are not encountered with the free-comparison mode.

5. Task Assigned to Listeners

A further variable affecting performance is the task assigned to the listener.
The task determines what kind of judgment the listener must make; some judg-
ments are apparently easier to make, or more reliable, than others. As shown in
Table 7, listener tasks may be grouped into three basis classes. There are tasks

TabLE 7. Classification of listener tasks.

Description Speech Samples/Test Item Example
Tasks Involving 1 Listener identifies speaker who is per-
Long-Term Memory sonally known to him.
Tasks Involving 2 Listener decides whether samples are
Direct Comparisons similar enough to have been produced
of Speech Samples by same speaker.
3 or More Listener decides which reference sam-

ple is most similar to test sample.

Tasks Involving 1 Listener rates sample on many seman-
Voice-Attribute tic-differential scales.
Ratings

involving (1) long-term memory, (2) direct comparisons of speech samples,
and (3) voice-attribute ratings.

Tasks involving long-term memory require that the listener has previously
heard at least one of the speakers participating in the test. The listener may
be assigned the task of deciding, for each test item, whether he has heard the
speaker before. In most of these tasks, however, the listener is assumed to be
familiar with the voices of all participating speakers. For example, if the listener
is personally acquainted with the speakers, he can rely on his memory of their
voices in identifying the speaker of a given test item. The ability of the listener
to perform this task depends on the degree to which he is familiar with each
speaker’s voice. In another task, the listener does not know the speakers per-
sonally, but the test format offers him various opportunities to associate their
names and voices.

Tasks involving direct comparisons of speech samples do not require that
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the listener be familiar with the speakers’” voices. First, consider tasks in which
each test item consists of only two speech samples. In one such task, the
listener rates the level of similarity of the samples. He usually responds with
reference to a specific rating scale. In another task, the listener decides whether
the two samples are similar enough to have been produced by the same speaker.
This is called a discrimination task. Because of the binary nature of the listen-
er’s response, no rating scale is necessary. It is assumed that the listener makes
use of an internal decision threshold; the observed level of similarity must reach
this threshold in order for the listener to report that the samples were produced
by the same speaker.

Different listeners tend to use widely different decision thresholds. While
some listeners are willing to ascribe the two samples to a common speaker
if the samples appear grossly similar, other listeners are willing to do so only
if the samples appear almost identical. To overcome this problem, the listener
is usually required to rate his confidence of the correctness of each decision.
His response then consists of two parts, a same-different decision and a confi-
dence rating. Such responses can be analyzed in a manner that eliminates the
effect of different decision thresholds. The procedure will be described in Sec-
tion C4.

Now consider tasks involving direct comparisons of three or more specch
samples. If two of the samples represent a common speaker, the listener may
be assigned the task of identifying these samples. In most tasks, however, the
comparisons are made with respect to one particular sample, which is called
the test sample, and the remaining samples serve as reference samples. Each
reference sample usually represents a different speaker. The listener may be
asked to decide which reference sample is most similar to the test sample.
Assuming that the speaker of the test sample is represented by one of the
reference samples, this task would be expected to result in the identifica-
tion of the speaker of the test sample. In another task, the listener rates
the levels of similarity between the test sample and each of the reference
samples. An appropriate rating scale must be provided for this task.

Tasks involving voice-attribute ratings require a relatively lengthy speech
sample. The listener rates this sample on a number of scales that are selected
to measure certain perceptual attributes of the voice. In some tasks, the scales
are related to specific aspects of speech production. The listener may rate a
particular voice as having moderately low pitch, fairly precise articulation, and
barely noticeable nasal resonance. Other tasks employ semantic-differential
scales. A particular voice may be rated as being more rich than thin, more
rumbling than whining, more hard than soft, more agitated than serene, and
more rough than smooth. Up to 49 semantic-differential scales have been used
to obtain such ratings. In both cases, the listener usually marks a response
form that lists all scales.

C. TEST FORMATS
The variables described above are treated according to a particular tes
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format that is chosen primarily to suit the purpose of the experiment. The
test format specifies the variable under study and provides as much control
as possible over the remaining variables. Besides taking into account the
speaker group, the speech material, the listener group, the mode of presenta-
tion, and the listeners’ task, the test format is also concerned with the method
by which the listeners’ responses are analyzed. To some extent, the choice of
the test format is influenced by practical considerations. These include the
amount of work involved in preparing the desired recordings, presenting them
to listeners, and analyzing the listeners” responses.

Several test formats that have been used repeatedly in various studies will
be described and evaluated. All of these tests are of the forced-choice type.
This means that the listener must respond categorically to each test item, no
matter how uncertain he may feel about making a decision. The tests are
labeled according to the listeners’ task.

1. Speaker-Naming Test

In the speaker-naming test, the speech samples to be identified are presented
sequentially to listeners who are already familiar with the voices of the par-
ticipating speakers. Usually, each listener knows each speaker on a personal
basis. The listener responds to each speech sample by writing the name of the
speaker he believes has produced the sample. The advantage of this test is that
it does not involve direct comparisons. Because there are no reference samples,
the test is easy to construct and can be administered in a short period of time.
A limitation is that all listeners may not be equally familiar with all voices. This
could introduce bias into the responses of some listeners and thereby lead to
large individual differences. From a practical standpoint, it is often difficult to
find many listeners who are very familiar with the voices of several common
speakers. Another limitation is the high accuracy of long-term memory for
familiar voices; the listeners’ responses may be only slightly affected by changes
in the experimental variable.

2. Modified Speaker-Naming Test

The modified speaker-naming test allows the listeners to become familiar
with the voices of previously unknown speakers. Before the test proper begins,
each participating speaker identifies himself, usually by a number, a letter, or
a pseudonym, and reads some training material. The actual test consists of a
sequence of speech samples in which the speakers are heard at random. Each
speech sample is followed by a suitable pause during which the listener
responds. Before the next speech sample is presented, the true speaker may
identify himself; this procedure ensures that the training of the listeners
continues as the test progresses.

The obvious advantage of this test is that it does not require listeners who are
already familiar with the voices of several common speakers. Another advan-
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tage is that the test is not overly demanding with respect to its construction and
administration. The training material and test items can usually be read by the
speakers in the desired order during a single recording session. A limitation is
that only about six speakers can be used in this test; listeners find it difficult to
identify more than six speakers, even under optimal experimental conditions
(Williams, 1964 ). Also, the level of performance tends to be relatively insensi-
tive to changes in some experimental variables ( Hecker and Williams, 1965).

3. Multiple-Choice Identification Test

In this test, the listener makes direct comparisons between a test sample
and several labeled reference samples. The speaker of the test sample, who is
to be identified, is known to be represented by one of the reference samples.
Thus, the listener has only to decide which reference sample is most similar
to the test sample. The speech samples may be presented in a fixed sequence,
or they may be continuously available to the listener, who switches among
them and makes free comparisons.

With the fixed-sequence mode of presentation, the number of reference
samples is usually restricted to four because the demands on short-term mem-
ory would otherwise be excessive ( Clarke, Becker, and Nixon, 1966). Figure 13
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illustrates the temporal biasing effect of short-term memory. The performance
on a given test item depends on the separation between the test sample and
the reference sample that is the correct response alternative. It is highest if
these two samples follow each other directly and lowest if they are separated
by the three remaining reference samples. This effect is especially pronounced
when the test sample follows rather than precedes the reference samples. The
effect probably increases as the number of reference samples is increased
above four. ‘

With the free-comparison mode of presentation, however, as many as eight
reference samples have been employed (Stevens, Williams, Carbonell, and
Woods, 1968). Here short-term memory plays a less important role, since the
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listener can usually modify the temporal order of the speech samples several
times before making his decision. The total number of speakers participating
in the multiple-choice identification test may, of course, exceed the number
of response alternatives offered on each test item.

The principal advantage of this test is that it is relatively easy to score, no
matter which mode of presentation is used. With the fixed-sequence mode,
if the number of reference samples is small, an additional advantage is that the
construction and administration of the test are not overly time consuming. A
different advantage may be realized with the free-comparison mode. Since the
listener can return to particular speech samples and compare various aspects of
the samples before arriving at a decision, he may perform better than he can
with the fixed-sequence mode, where his decision must be based on a single,
fleeting comparison between the test sample and each reference sample.

The limitation of this test, for the fixed-sequence mode of presentation, is
the biasing effect of the short-term memory. This applies especially if the
number of reference samples is large. If the number of reference samples is
small, another limitation arises; different listeners may employ different decision
strategies. In an ABX design,” for example, some listeners may compare X indi-
vidually with A and B, while other listeners may disregard A and only compare
X with B. This may lead to large individual differences. The limitation for the
free-comparison mode of presentation is that the instrumentation requirements
may be severe, particularly if many reference samples are used.

4. Discrimination Test

In the discrimination test, each test item consists of two speech samples.
Either the fixed-sequence mode or the free-comparison mode of presentation
may be employed. The listener decides whether the two samples were pro-
duced by the same or different speakers. As mentioned carlier, the listener
is usually required to rate his confidence in the correctness of each same-
different decision so that his decision threshold may be taken into account.

The listener’s responses are analyzed in the following manner. Suppose three
confidence ratings are used; the listener must report either that he is very sure
his decision is correct, that he is fairly sure his decision is correct, or that his
decision is only a best guess. This would allow the construction of a six-point
similarity scale ranging from same speaker, very sure to different speakers, very
sure. Responses to pairs of speech samples that are, in fact, by the same speaker
and to pairs of speech samples that are, in fact, by different speakers are listed
separately along this similarity scale.

For example, Table 8 lists possible responses of two listeners on a 200-item
discrimination test employing three confidence ratings. There are as many
test items in which the two samples are by the same speaker as there are test
items in which the two samples are by different speakers. From an inspection

2In the ABX design, A and B are reference samples, and X is the test sample.
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TasrLe 8. Possible responses of . two listeners on 200-item discrimination test employing
three confidence ratings. Listeners use different criteria for deciding whether speech samples
are by same speaker or by different speakers.

Listener X Listener Y
Same/Diff. Confidence Similarity -
Decision Rating Scale In Fact In Fact In Fact In Fact

Same Diff. Same Diff.

Same + + + 1 40 3 77 22
Same + + 2 25 8 13 20
Same + 3 19 17 5 19
Diff. + 4 9 20 2 12
Diff. + -+ 5 4 23 2 15
Diff. + 4+ + 6 3 27 1 12
Total Items 100 100 100 100

of the data it is evident that if the confidence ratings are not considered (i.e.,
if the six-point similarity scale is reduced to a simple same-different scale),
Listener X would be 40 + 25 + 19 = 84% correct on samples by the same
speaker and 20 + 23 + 27 = 70% correct on samples by different speakers.
Listener Y, on the other hand, would be 95% correct on samples by the same
speaker but only 39% correct on samples by different speakers. The two listeners
are using different decision thresholds; Listener Y is much more inclined to
decide same than Listener X.

The next step in the analysis of the listener’s responses consists of a re-
arrangement of the data according to the six decision criteria inherent in the
response format. As shown in Table 9, the first decision criterion (labeled A)
includes only the first level of the six-point similarity scale. If a listener were
to adopt this criterion, he would decide same only if he felt very sure that the
speech samples are by the same speaker; if he had the slightest reservation he
would decide different. The second decision criterion (labeled B) includes

TasLe 9. Probabilities (in gercent) of listener deciding same when speech samples
are, in fact, by same speaker and when speech samples are, in fact, by different speakers, for
six decision criteria.

Listener X Listener Y
Decision Included
Criterion Similarity Levels In Fact In Fact InFact In Fact
Same Diff. Same Diff.
A 1 40 5 77 22
B 12 65 13 90 42
C 123 84 30 95 61
D 1234 93 50 97 73
E 12345 97 73 99 88
¥ 123456 100 100 100 100
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two similarity levels. A listener adopting this criterion would decide same if he
felt either very sure or fairly sure that the speech samples are by the same
speaker. Each successive decision criterion includes one more similarity level.
The last decision criterion (labeled F) thus includes all six similarity levels.
Using this criterion, a listener would always decide same. The column entries
of Table 9 are the cumulative sums of corresponding column entries of Table 8.
Table 9 may be viewed as listing the probabilities of each listener deciding
same when the speech samples are, in fact, by the same speaker and when the
speech samples are, in fact, by different speakers.

The data of Table 9 are plotted in Figure 14. This figure shows that the
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Ficune 14. Receiver Operating Characteristic curves for two
listeners in discrimination test nsing confidence ratings.

so-called Receiver Operating Characteristic (ROC) curves® for the two
listeners coincide. Thus, although these listeners use different decision thresh-
olds, they are equally capable of discriminating among speakers. The final
measure of performance, namely the position and shape of the ROC curve, is
not affected by differences in decision thresholds. If one listener had more
difficulty with the discrimination task, his ROC curve would appear shifted
toward the diagonal of Figure 14.

It is apparent that the discrimination test can be used to authenticate a

3For a detailed discussion on the theory and uses of ROC curves, see Egan, Schulman,
and Greenberg (1959).
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speaker who claims a particular identity. The speech sample submitted for
authentication, which usually includes the name of the alleged speaker, is
paired with a reference sample that has, in fact, been produced by the speaker
whose identity is being claimed. If the listener decides that the two speech
samples are similar enough to have been produced by the same speaker, he
is effectively authenticating, or accepting, the challenging speaker. On the
other hand, if the listener decides that the samples were produced by different
speakers, he is rejecting the challenging speaker and designating him an
imposter. The listener can commit two types of errors; he may falsely accept
an imposter, or he may falsely reject a speaker who has the claimed identity.
Depending on the specific application, one type of error can be more costly
than the other, and the listener may adjust his decision threshold accordingly.

From a theoretical point of view, the discrimination test offers three advan-
tages over the multiple-choice identification test. First, because each test item
consists of only two speech samples, the test makes minimal demands on
short-term memory. Also, the listener can employ only one decision strategy;
he must appraise the level of similarity of the two samples presented to him.
And finally, the effects of different listeners using different decision thresholds
can be eliminated with the aid of confidence ratings. The practical advantages
are that the test is relatively easy to construct and that it requires little time
for administration. Many investigators consider this the test of choice. In com-
parison with many other tests, however, the discrimination test employing
confidence ratings is more difficult to score. The results are usually expressed
in the form of ROC curves.

5. Identification-Discrimination Test

As its name implies, this test has some of the features of the multiple-choice
identification test and some of the features of the discrimination test. The
identification-discrimination test has the same basic construction as the mul-
tiple-choice identification test; each test item consists of a test sample and
several labeled reference samples. However, the test sample may have been
produced by a speaker who is not represented by any of the reference samples.
The listener is usually told this.

Assuming that the listener can find a reference sample resembling the test
sample, he must now also consider the possibility that the speaker of the
selected reference sample did not produce the test sample. The listener carries
out two tasks in succession; first he decides which reference sample is most
similar to the test sample, and then he decides whether the two samples are
similar enough to have been produced by the same speaker. If the listener
should find that none of the reference samples resemble the test sample, or
that the selected reference sample and the test sample are not similar enough,
he reports that he cannot identify the speaker of the test sample. Thus, in this
test, there is one more response alternative than the number of reference
samples.
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The identification-discrimination test can be used to authenticate a speaker
who requests access to certain information or facilities. Consider a situation
in which several persons are authorized to have access, and in which a chal-
lenging speaker has not stated his name.* A speech sample from the challenging
speaker is taken as the test sample. Each authorized person has previously
recorded a suitable reference sample. The listener determines whether the test
sample resembles any of the reference samples to a degree that is sufficient for
the challenging speaker to be authenticated and thereby granted access. As a
secondary function, the listener also determines the identity of the authenti-
cated speaker. Occasionally, however, the listener may correctly authenticate
a speaker on the basis of an incorrect identification.

This test has the advantage of being somewhat more realistic than the mul-
tiple-choice identification test. In most practical situations, especially when
the number of available reference samples is small, there is always the possi-
bility that a particular speaker cannot be identified. A limitation of the identi-
fication-discrimination test is that it is more difficult to score than either the
multiple-choice identification test or the discrimination test. The listener can
make three types of errors; he may either incorrectly identify a speaker who
is represented by the reference samples, falsely reject such a speaker, or
falsely accept a speaker who is not represented by the reference samples.
Generally, these types of errors are not assigned equal weight in computing an
overall measure of performance, so that they must be tallied separately. If
confidence ratings are used, the analysis of the listeners’ responses is even
more complex.

6. Voice-Attribute Rating Test

This test is also concerned with speaker identification and discrimination,
but it does not require the listener to perform these tasks directly. Instead,
speech samples from different speakers are rated on a number of psychophysical
scales. These scales arc selected to measure certain perceptual attributes that
are differentially shared by all voices. The speech samples are usually pre-
sented in a fixed sequence; the duration of each sample is sufficient for the
listener to mark all scales. In an effort to determine the characteristics of the
psychological space in which the specch samples were perceived by the listen-
ers, the ratings are first subjected to an analysis of variance and then to a
factor analysis. The separation of the speech samples in the psychological space
provides information on the perceptual differences among the voices and hence
on the feasibility of speaker identification and discrimination. The procedure
involved in using this test will be described in more detail in Section D.

The voice-attribute rating test offers various opportunities to study the many
factors underlying overall listener responses, and it is easier to construct and

4A challenging speaker is usually very cooperative; he can be asked to identify himself.
Authentication can then be accomplished with the discrimination test, as described earlier.
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administer than most other tests. However, the analysis of the ratings is complex
and time consuming. Another limitation is the relatively poor reliability of
the test; the results appear to depend greatly on the particular speakers, scales,
and listeners employed.

D. PERCEPTUAL BASES OF SPEAKER RECOGNITION

In one of the earliest studies on speaker recognition (McGehee, 1944), an
attempt was made to determine why some voices could be identified more
readily than others, and why certain voices tended to be confused by listeners.
Groups of listeners were required to rate the voices of several speakers in
terms of their apparent unlikeness (i.e., uniqueness), agreeableness, pitch, and
speaking rate. Although the results were difficult to interpret, this experiment
may be regarded as the first of many inquiries into the perceptual bases of
speaker recognition.

Underlying most studies of this kind is the assumption that a listener makes
use of only a small number of perceptual parameters in discriminating between
voices and in identifying familiar speakers. Because the listener is not conscious
of this, he cannot be asked directly about the nature of thesc perceptual
parameters. In order to explore the parameters, it is necessary to employ in-
direct judgments and relatively complex analytical procedures. If the hypothe-
sized parameters can be adequately defined and measured, they may provide
a unique and compact description of a particular voice. Perceptual parameters
are usually explored by means of the voice-attribute rating test. Listeners rate
different voices on a large number of psychophysical scales; semantic-differ-
ential scales are commonly used for this purpose. Statistical analyses of the
ratings often permit a grouping of the scales suggesting the involvement of
as few as four perceptual parameters.

The general procedure was outlined by Voiers (1964). In this study, 32
listeners rated each of 16 voices on 49 semantic-differential scales. An analysis
of variance was performed to determine the major sources of variance in the
ratings; they were the speakers, the listeners, and the speaker-listener inter-
action. For each of these three effects, a factor analysis was performed to
determine how many orthogonal factors would suffice to account for most of
the variability of the effect. Four factors were required to account for the
variability of the speaker effect, each factor being represented by several of
the 49 scales. On the basis of the labeling of the scales, the four factors were
named clarity, roughness, magnitude, and animation. Similarly, six factors were
required for the listener effect, and five factors for the interaction effect. The
four factors required for the speaker effect were viewed as providing a coordi-
nate system for a four-dimensional psychological space that contains all 16
voices. Thus, four numbers would specify the location of a particular voice
in this space. Voices that are perceptually identical would presumably be
described by the same set of numbers.

Unfortunately, the association of particular semantic-differential scales with
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each of the factors required for a given eftect is not unique; it depends on the
placement of the coordinate system within the multidimensional space. A
criterion for the orientation of the system axes must be selected, and this
selection tends to be somewhat arbitrary. For the grouping of scales repre-
sented by the four factors named above, a normalized varimax criterion was
selected. Although other criteria might have led to different groupings and
hence to different factor names, the dimensionality of the observation space
would have remained the same.

In a similar study by Holmgren (1963), 10 listeners rated each of 10 voices
on only 12 semantic-differential scales. The smaller number of scales was still
considered sufficient to provide for reliable differentiation among the speakers.
Again, four factors were required to account for most of the variability of the
speaker effect; these factors were given the names intensity, quality, pitch, and
rate. Voiers (1965) tried various modifications of the voice-attribute rating
test, including the use of rating forms featuring combined scales, filler items,
and maximum connotative dissimilarity between adjacent items. None of these
modifications resulted in the consistent emergence of more than four factors
in the analysis of the variability of the speaker effect. Only in a study con-
cerned with the use of this approach for evaluating communication systems
were five factors required (Voiers, Cohen, and Mickunas, 1965). This study
will be discussed in Section F.

There has been considerable interest in identifying acoustical correlates for
each of the perceptual parameters that can be isolated by means of the voice-
attribute rating test. Finding such correlates could promote a better under-
standing of the acoustical manifestations of speaker identity. In most studies,
the search for acoustical correlates involves an intercorrelation between per-
ceptual variables and physical measures, followed by a factor analysis.

Voiers (1965) performed a factor analysis of 23 variables, 16 of which were
derived from listener ratings of unprocessed and processed speech samples.
(Each of four perceptual factors was represented by data for unprocessed
speech, vocoderized speech, lowpass-filtered speech, and highpass-filtered
speech.) The remaining seven variables were physical measures related to
average fundamental frequency, average speaking rate, average spectral char-
acteristics, and speech level. For the case of the unprocessed speech, five
factors emerged from the analysis; three of these were defined by perceptual
variables and two primarily by physical measures. Each of the three perceptual
factors was found to be more or less correlated with several physical measures.
For the case of the processed speech, the physical correlates of some perceptual
factors were altered depending on the type of processing involved.

In a related study by Holmgren (1967), two sets of data were obtained;
these were average ratings of the voices of 10 speakers on 12 semantic-differ-
ential scales, and seven physical measures of the speech of the same speakers.
The physical measures included the mean and variance of the amplitude of
voiced speech sounds, the amplitude of voiceless speech sounds, and the funda-
mental frequency. A measure of duration was also taken. These two sets of
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data were intercorrelated, and the resulting 19 x 19 intercorrelation matrix
was subjected to a factor analysis. Five factors were required to account for
over 90% of the total variance. Three of these factors were represented by both
voice ratings and physical measures, and two were represented primarily by
physical measures. Only a few of the scales were found to be correlated with
expected physical measures (e.g., the scales low-high and deep-shallow were
both highly correlated with the fundamental frequency). Most scales, however,
were not so correlated (e.g., the scale slow-fast appeared to be relatively in-
dependent of the duration measure).

Both of these studies indicate that the dimensionality of the observation
space is higher when perceptual variables and physical measures are combined
than when only perceptual variables are considered. This would suggest that
the two sets of data sample different portions of some common information on
voice characteristics. A relatively low intercorrelation between the two sets of
data would therefore be expected. In the ideal case, where both sets of data
sample the same information, one set wquld be totally redundant and would
not increase the dimensionality of the observation space if it were added to the
other set. By definition, the two sets of data would be perfectly intercorrelated.
The general finding that the perceptual variables cannot be clearly related to
the physical measures tends to support this interpretation. These studies
illustrate the difficulties encountered in searching for acoustical correlates of
the perceptual parameters. The degree of success that can be achieved depends
largely on the labeling of the perceptual factors (which, in turn, depends on
the speakers, the listeners, and the choice of scales), and on the physical
measures employed.

Clarke and Becker (1969) approached the problem somewhat differently.
They used five graduate students of speech science, who first took a multiple-
choice identification test. The students then attempted to define a set of psycho-
physical scales which would be relevant to the task of differentiating among
voices. Six scales were specified: pitch, pitch variability, rate, click-like ele-
ments, sibilant intensity, and breathiness. These scales were used to rate the
voices heard in the multiple-choice identification test, and decision rules were
applied to the ratings so that the resulting scores could be compared with the
mean score obtained on the multiple-choice identification test. Physical mea-
sures of fundamental frequency, long-term spectral energy, and duration (nor-
malized for sentence length) were also obtained, and the same decision rules
were applied to these data. It was found that the scores based on the ratings
were much lower than the mean score achieved on the multiple-choice iden-
tification test; the scores based on the ratings were also lower than some of
the scores based on physical measures. An analysis of the relations between
the six scales and the physical measures revealed that the pitch and rate scales
were highly correlated with the measures of fundamental frequency and
duration, respectively. The remaining scales were not found to be correlated
with any of the available physical measures.

From these observations it was concluded that the listener extracts more
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information from speech samples than is contained in either voice-attribute
ratings or relatively simple physical measures. Nevertheless, voice-attribute
ratings and physical measures appear to contain much information that is
relevant to speaker discrimination and identification. The investigators care-
fully point out that while their study shows what kinds of information can be
used by listeners in differentiating among voices, it does not demonstrate that
listeners do indeed make use of such information. Thus, the question about
the perceptual bases of speaker recognition and their acoustical correlates
remains largely unresolved.

E. ACOUSTICAL MANIFESTATIONS
OF SPEAKER IDENTITY

Many experimental studies have attempted to determine what features of
the speech signal carry information relevant to the identity of the speaker.
Unfortunately, only a small number of these studies have been designed spe-
cifically to examine interspcaker and intraspeaker variability. Rarely has the
speech signal been subjected to a detailed acoustical analysis in order to
explore its speaker-dependent parameters. In most studies, the speech signal
was degraded or distorted in a particular manner before it was presented to
listeners. The amount by which test scores were thereby reduced was taken
as an indication of the importance of those features of the spcech signal that
were distorted or eliminated.

Of considerable interest has been the question of what portions of the
broadband frequency spectrum contribute most to speaker identifiability.
Lowpass, highpass, and bandpass filtering of the speech signal have been
employed as means for answering this question. The results of two studies
suggest that the removal of spectral energy below 500 Hz or above 3 kHz
does not have much effect on speaker-identification scores (Pollack, Pickett,
and Sumby, 1954; Peters, 1954). But the results of a later study, which are
shown in Figure 15, indicate that spectral energy outside of this frequency
range may also contribute to speaker identifiability (Clarke, Becker, and Nixon,
1966). Lowpass filtering has sometimes been used to remove the message
content of the speech signal. Passing only frequencies below 500 Hz greatly
reduces speaker identifiability (Skalbeck, 1955) but apparently still allows
listeners to assess personality factors related to hypertension (Starkweather,
1956). In one study, the speech signal was passed through single octave-band
filters, and the highest speaker-identification scores were achieved using the
filter covering the range 1.2-2.4 kHz (Peters, 1954). In a similar experiment,
various octave bands of the broadband speech signal were individually em-
phasized; when the band containing the fundamental frequency was empha-
sized, the test scores were higher than the scores obtained without spectral
empbhasis ( Peters, 1956).

The effect on speaker-identification scores of adding white noise to the
speech signal has also been investigated. The results of one study (Clarke,
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Becker, and Nixon, 1966) are shown in Figure 16. It is difficult to specify what
parameters of the specch signal are disturbed most when random noise is
added. Hence, not much is learned from experiments of this kind. Several
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studies have employed backward-played speech as a form of distortion. The
temporal reversal of the speech signal not only removes its message content,
but the sequence of normal articulatory events is also disturbed. Consequently,
the ability of listeners to identify familiar speakers is appreciably impaired
(Skalbeck, 1955; Williams, 1964; Clarke, Becker, and Nixon, 1966; Bricker and
Pruzansky, 1966). As indicated in Figure 17, this effect is noted for all types
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Ficune 17. Speaker identifiability for various types of speech material
presented in forward and backward order. Data are shown for two listeners.
(Reprinted, by permission, from Bricker and Pruzansky, 1966.)

of speech material, including excerpted vowels, but is especially pronounced
for monosyllables. Thus, temporal clues seem to be important for speaker
identification. It is not clear whether listeners use temporal clues per se or
whether their judgments depend on a perceptually realistic speech signal. The
ability to identify speakers has been learned with natural speech over many
years; this ability may not be readily transferable to a novel form of speech
distortion that can exist only in the laboratory.

It will be recalled from Chapter II that both static and dynamic aspects of
articulation may be expected to impart speaker-dependent characteristics on
the speech signal. The contribution to speaker identifiability of only the static
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aspects may be studied by restricting the speech material to sustained isolated
vowels. Even when such vowels are artificially prolonged with tape loops, the
speaker-identification scores are extremely low (Skalbeck, 1955). This demon-
strates the importance of the dynamic aspects of articulation. There is some
evidence that the relative identifiability of different speakers, and the particular
confusions that arise, vary from vowel to vowel ( Bricker and Pruzansky, 1966).
Lowpass and highpass filtering of isolated vowel sounds have been used to
investigate the relative contributions to speaker identifiability of various por-
tions of the steady-state vowel spectrum. Removal of spectral energy below
about 1 kHz or above about 4 kHz does not appreciably affect test scores
(Compton, 1963; Ramishvili, 1966). Thus, the relevant spectral clues appear
to be concentrated in the ranges of the second, third, and fourth formants.

Many studies describe efforts to separate the contributions to speaker iden-
tifiability of glottal-source characteristics and articulatory characteristics. The
results of several experiments indicate that the involvement of the glottal
source aids speaker identification. Whispered speech, for example, leads to
significantly lower test scores than normal speech (see Figure 12); the scores
for whispered speech are even lower than those for backward-played speech
(Williams, 1964). A speaker-naming test employing isolated utterances of
Russian phonemes produced higher scores for voiced speech sounds, especially
for vowels, than for voiceless speech sounds (Ramishvili, 1966). Nevertheless,
as would be expected on theoretical grounds, voiceless speech sounds do carry
some information about the speaker. Isolated utterances of the voiceless frica-
tives [s] and [[] allow listeners to identify at least the sex of the speaker
(Schwartz, 1968; Ingemann, 1968).

Shearme and Holmes (1959) clearly demonstrated the important role played
by articulatory characteristics. These investigators used a channel vocoder to
produce a unique form of spectral distortion that was designed to obscure a
primary speaker-dependent effect of articulation, namely the relative spacing
of the formant frequencies. Various portions of the spectrum were shifted
upward in frequency by different amounts; the first formant was effectively
raised by 100 Hz and the second and third formants by 300 Hz. Treated and
untreated speech samples were presented to listeners in a discrimination test.
When the paired speech samples were, in fact, produced by the same speaker
but only one was treated, the listener believed that two speakers were involved.
When the paired speech samples were, in fact, produced by different speakers,
treatment of only one of the samples exaggerated the perceptual difference.
In order to exclude possible clues arising from differences in intonation pat-
terns, all speech samples were processed by the vocoder to remove the normal
fluctuations in fundamental frequency. Although the formant-frequency trans-
lations used in this study are crude compared with the relative spacings of the
formant frequencies which may distinguish different speakers, the study does
suggest that articulatory characteristics are more important than glottal-source
characteristics.

Miller (1964) conducted a more direct investigation of the relative contri-
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butions of articulatory and glottal-source characteristics to speaker identifi-
ability. In this study, a computer was used to synthesize speech signals which
might be encountered if it were physiologically possible to interchange either
the vocal tracts or the larynges of two speakers. By inverse filtering in syn-
chronism with fundamental frequency, phonetically equivalent speech samples
from several speakers were reduced to their two basic components: the vocal-
tract transfer function and the glottal waveform (see Chapter II). These data
were then recombined to produce various hybrid speech samples which could
be compared with the natural speech samples.

The study consisted of four experiments. For the first experiment, two
speakers were selected whose utterances of the word hod exhibited the same
duration and the same fundamental frequency. When each hybrid sample was
compared with the two natural samples, it sounded more like the speaker
whose vocal tract was represented than like the speaker whose larynx was
represented. Because the utterances of many speakers were incompatible with
respect to duration and fundamental frequency, the second experiment em-
ployed several artificial glottal waveforms. While some of these waveforms
were intended to be realistic, others were triangles, pulses, and sinusoids.
These waveforms were individually combined with a vocal-tract transfer func-
tion that was derived from one speaker’s utterance of the word hod. Listeners
had the impression that all of the hybrid samples were produced by the same
speaker, although there were obvious differences in speech quality. So far, the
results indicated that, for a consonant-vowel-consonant syllable, the vocal-tract
transfer function carries more information about the identity of a speaker than
the glottal waveform.

The third cxperiment was designed to test whether this is also true for a
sustained isolated vowel, where the vocal-tract transfer function is known to be
relatively constant throughout an utterance. Six speakers produced isolated
utterances of the vowel [a], and the vocal-tract transfer functions extracted
from these utterances were combined with two artificial but realistic glottal
waveforms. The perceptual differences due to different vocal-tract transfer
functions were found to be much greater than those due to different glottal
waveforms. In the final experiment, each speech sample consisted of many
repetitions of a single, 10-msec fundamental period. Two natural samples and
two hybrid samples were constructed from representative vocal-tract transfer
functions and realistic glottal waveforms. These speech samples were presented
to listeners in a two-choice identification test; the reference samples were always
the two natural samples, and the test sample was either a natural sample or a
hybrid sample. The results showed that each hybrid sample tended to be
matched with the natural sample having the same vocal-tract transfer function.
Thus, this study provides further evidence that articulatory characteristics
contribute more to speaker identifiability than glottal-source characteristics.®

51t is conceivable that the results of this study were influenced by factors inherent to the
technique of inverse filtering in synchronism with fundamental frequency. For example, the
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As mentioned in Section D, experimental efforts to identify acoustical corre-
lates for each of the perceptual parameters isolated by the voice-attribute
rating test have been largely unsuccessful. It is entirely possible, however, that
further studies employing a greater number and variety of physical measures
will provide insight into the relation between perceptual and acoustical vari-
ables. The desired acoustical correlates would allow a much more compact
description of a given voice than is represented by the speech waveform.
Numerous experiments have demonstrated that a complete physical description
of speech is not necessary for performing speaker recognition by machine (i.e.,
without human intervention). But the relative importance of various descrip-
tors of the speech signal has not been systematically examined. Further studies
along these lines could contribute to a better understanding of the acoustical
manifestations of speaker identity.

F. EVALUATION OF COMMUNICATION SYSTEMS

It is often necessary to evaluate the capability of a communication system
to transmit speech of acceptable quality. The concept of speech quality is
difficult to define; it probably involves such factors as message intelligibility,
naturalness, speaker recognizability, and aesthetic appeal. Only some of
these factors can be measured objectively (Hecker and Guttman, 1967). Mes-
sage intelligibility can be estimated by transmitting lists of words over the
system and determining the percentage of words correctly understood by a
group of listeners. Several intelligibility tests have been developed for this
purpose, such as the Harvard Phonetically Balanced (PB) Word Test (Egan,
1948). Among the tests which have been used to evaluate systems with respect
to speaker recognizability are the modified speaker-naming test (Stevens,
Hecker, and Kryter, 1962; Stuntz, 1963) and the voice-attribute rating test
(Voiers, Cohen, and Mickunas, 1965). For an extensive evaluation of speech-
communication systems, it is common practice to use both an intelligibility test
and a speaker-recognition test.

Studies in which both types of tests are used under the same conditions
provide opportunities for examining the relationship between intelligibility
and speaker recognizability. Hecker and Williams (1965) obtained scores for
five speech-processing systems with a paired-comparison preference test of
speech quality, two types of intelligibility tests, and a modified speaker-naming
test. Two systems were found to be equivalent in speech quality, and two
other systems were found to be equivalent in intelligibility. But four systems
were equivalent in speaker identifiability. Only the most severe form of speech-
signal degradation (peak-clipping followed by bandpass filtering) produced a
statistically significant reduction in the scores obtained with the modified speak-

vocal-tract transfer function is assumed to be constant throughout each fundamental period.

Whether this assumption could have biased some experiments cannot be conclusively
determined.
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er-naming test. In a related experiment, Clarke, Becker, and Nixon (1966) used
the Harvard PB Word Test and a two-choice identification test to evaluate the
effects of three types of speech-signal degradation: lowpass filtering, highpass
filtering, and additive noise. The results, shown in Figures 15 and 16, indicate
that speaker identifiability is less dramatically affected than intelligibility over
a given range of degradation.

Both of these studies suggest that either speaker-recognition tests are in-
herently less sensitive than some intelligibility tests, or the acoustical manifes-
tations of speaker identity are more resistant to signal processing than the
acoustical manifestations of the semantic content. The first interpretation is
regarded as the more likely, It should be pointed out that neither study tested
analysis-synthesis systems such as vocoders. Vocoders are designed to accom-
plish a more economical transmission of the speech signal® with a minimal
reduction in message intelligibility. In order to reach this objective, the speech
signal is often processed in a manner which has a detrimental effect on speaker
recognizability. The acoustical manifestations of speaker identity can be either
totally destroyed or systematically transformed. In the latter case, listeners
may or may not be able to learn a new set of clues for each speaker. Thus,
when analysis-synthesis systems are cvaluated, speaker-recognition scores can
be more sensitive indicators of system performance than intelligibility scores.

Clarke, Becker, and Nixon (1966) found that the two-choice identification
test produced a much greater interlistener variance than the Harvard PB Word
Test. Apparently the individual listeners differed greatly in their ability to
recognize speakers, but they were about equally able to understand what the
speakers said, This finding is not surprising, considering how little time listeners
have to become familiar with the voices heard in a speaker-recognition test;
in contrast, listeners have spent many years learning to understand the spoken
language. The large interlistener variance observed with the two-choice
identification test can also be interpreted in another way. In the beginning of
the test, different listeners may have selected different sets of clues for differen-
tiating among the speakers. Some listeners may have inadvertently picked rather
inefficient clues that they nevertheless continued to use throughout the test,
whereas other listeners may have made better choices. This interpretation
allows for the possibility that an individual listener may change his decision
strategy as the test proceeds, with a corresponding change in his performance.
Such temporal changes in the scores of an individual listener have not as yet
been investigated.

The preceding discussion argues for a large number of listeners in evaluating
communication systems with respect to speaker recognizability. It may also
be beneficial to familiarize the listeners with the speakers’ voices for a con-
siderable period of time before data are collected, especially if unusual forms

8The processed speech signal may be transmitted over an analog link having less band-
width, or over a digital link having a lower information rate, than would be required to
transmit the unprocessed speech signal.
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of speech processing are involved. Both of these precautionary measures may
help to minimize the effects of individual differences in the final results.

The use of voice-attribute ratings represents an entirely different approach
to the problem of evaluating communication systems. Voiers, Cohen, and
Mickunas (1965) explored the feasibility of measuring how well a given com-
munication system preserves the perceptual parameters involved in speaker
recognition. Performance standards were provided by ratings of unprocessed
speech samples on ten semantic-differential scales. Analyses of these ratings
permitted the identification of five perceptual factors, each of which was repre-
sented by two scales: pitch-magnitude, loudness-roughness, animation-rate,
clarity-beauty, and normality. Various vocoder systems were evaluated in terms
of the degree to which each of these factors was transmitted. The results showed
that some factors did not appear to be sufficiently affected by the vocoders to
warrant their inclusion in similar evaluation programs. This is primarily a prac-
tical consideration; theoretical questions concerning this technique have been
considered in Section D.

G. LISTENER FALLIBILITY

The objective of most studies on speaker recognition by listening is, of course,
to appraise the likelihood that a listener’s judgment may be in error. In fact,
one of the first studies of this kind was motivated by a legal question of listener
fallibility that arose in the Lindbergh case of 1935 (McGehee, 1937). Lindbergh
claimed that he recognized the voice of the defendant as the voice of his son’s
kidnapper heard almost three years earlier. Although his testimony was ac-
cepted by the court, the defense argued that such recognition was not entitled
to much weight as evidence.

McGehee (1937) studied the reliability with which listeners can recognize
unfamiliar voices. Groups of listeners participated in two experimental sessions
that were separated in time from one day to five months. During the first
session, they heard an unfamiliar speaker read a paragraph of text. During the
second session, they heard the same paragraph read successively by five speak-
ers, including the speaker from the first session. The ability of the listeners to
recognize the speaker whom they heard before was investigated as a function
of the time interval between the two sessions. The results, which are shown in
Table 10, indicate that the reliability of recognition decreases rapidly as the
time interval is extended beyond two weeks.

TaBLE 10. Percent correct recognition of unfamiliar male speakers after various intervals
of time. ( Reprinted, by permission, from McGehee, 1937.)

Days Weeks Months
1 2 3 1 2 3 1 3 5
83 83 81 81 69 51 57 35 13
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The effect of increasing the number of unfamiliar speakers heard during the
first session was also investigated. When one of two speakers heard during the
first session spoke again during a second session two days later, 77% of the
listeners recognized his voice. When five speakers participated in the first
session, only 46% of the listeners could recognize one of their voices two days
later. Vocal disguise was also found to be effective in lowering recognition
scores. In this experiment, only one speaker was heard during the first session;
he disguised his voice by changing its fundamental frequency. During the
second session he used his normal voice. For a time interval of one day, correct
recognition was reduced by 13%.

Stevens, Williams, Carbonell, and Woods (1968) investigated the ability of
listeners to distinguish between familiar and unfamiliar voices. This study
employed an identification-discrimination test. For each of 32 test items, a
test sample and eight reference samples representing the same word were
continuously available to the listener for free comparisons. In one experiment,
four of the 32 test items involved utterances by unfamiliar speakers (i.e.,
speakers not represented by the reference samples); in another experiment,
this number was increased to 16. No particular effort was made to select un-
familiar speakers whose utterances would be perceptually similar to any of
the reference utterances. The results of these two experiments are shown in
Table 11. It appears that in both cases the listeners were able to detect most of
the unfamiliar speakers. Also, most of the familiar speakers were recognized as
such (and correctly identified ).

There are situations in which an imposter may try to deceive the listener by
mimicking. Carbonell, Grignetti, Stevens, Williams, and Woods (1965) ex-
amined the effects of mimicking on the recognition of unfamiliar speakers. In
the same identification-discrimination test described above, 16 of the 32 test
items involved utterances by unfamiliar speakers; one-half of these utterances

TaBrLe 11, Percent correct recognition of familiar and unfamiliar male speakers by
listening. Data are shown for two experimental conditions. (Reprinted, by permission, from
Stevens et al., 1968.)

4 of 32 Test Items by Unfamiliar Speakers

Recognized As

Speaker Familiar Unfamiliar
Familiar 88 12
Unfamiliar 6 94

16 of 32 Test Items by Unfamiliar Speakers

Recognized As

Speaker Familiar Unfamiliar
Familiar 92 8
Unfamiliar 8 92

48 ASHA Monographs No. 16 1971



were carefully produced to sound as much as possible like certain reference
utterances. The mimicking was done by two of the investigators, who also
served as critical listeners in comparing their various versions of imposter
utterances with the prototypes. Fewer mimicked utterances were falsely ac-
cepted than other foreign utterances, suggesting that imposters are not
particularly successful in deceiving listeners.

In the absence of other data, however, this conclusion can only be regarded
as tentative. The experiment employed isolated utterances of the bisyllabic
words sidewalk and dovetail, Such utterances may be difficult to mimic because
there is little opportunity to copy gross articulatory features; many of the
perceptually distinguishing characteristics of these utterances may depend
on properties of the vocal mechanism over which the speaker has no direct
control. It is known that entertainers who impersonate famous people attempt
to copy the prosodic features of their speech (patterns of intonation and
stress). These features can be applied more readily to utterances of longer
duration. A possible criticism of the experiment is that the investigators may
not have been particularly good mimickers. Effective mimicking is a complex
skill, if not an art,

It appears, then, that further studies must be undertaken in order to evaluate
the reliability of speaker recognition by listening. Such studies are especially
desirable in view of the many advantages of this method of speaker recognition
over other methods to be described in the following chapters.
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Chapter IV

SPEAKER RECOGNITION BY VISUAL
COMPARISON OF SPECTROGRAMS

A. INTRODUCTION

This method of speaker recognition makes use of an instrument which con-
verts the speech signal into a visual display. The instrument is called a sound
spectrograph, and the display it provides is a sound spectrogram (or voice-
print). Spectrograms of different utterances of a given word or phrase are
presented to a trained observer, who attempts to determine whether some ut-
terances were produced by a common speaker. Because the method has
obvious applications in criminology, many studies have been concerned with
its reliability as a means of positive identification. The operation of the sound
spectrograph will be described first in this chapter. The relevant variables of
speaker recognition by visual comparison of spectrograms will be discussed
next, and the commonly used test formats will be described. After this, the
question of observer fallibility will be considered in some detail. Finally, this
method will be compared with speaker recognition by listening,

B. SOUND SPECTROGRAPH

Various interests motivated the development of the sound spectrograph (Pot-
ter, Kopp, and Green, 1947). There was an interest in the detailed structure of
the speech signal, which was insufficiently understood to settle certain funda-
mental arguments about speech production and perception. No instrument
then available would simultaneously display the temporal and spectral proper-
ties of the speech signal. Another interest was to provide the deaf with a new
form of visible speech.! It was believed that a deaf person could be taught to
read a visible pattern which reflected the semantic contents of the speech
signal. During the war, a need arose for an instrument which could be used
to study speech-privacy systems. Several experimental sound spectrographs
were built to meet these objectives.

The sound spectrograph consists of four basic parts: (1) a magnetic record-
ing device, (2) a variable electronic filter, (3) a drum which is coupled to

1Alexander Melville Bell (1819-1905) developed a phonetic alphabet for teaching the
deaf; he called this alphabet Visible Speech (see Wise, 1957).
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the magnetic recording device and carries a sheet of special paper, and (4) an
electric stylus which marks the paper as the drum rotates. The magnetic
recording device is first used to record a short sample of speech; the duration
of the speech sample corresponds to the time required for one revolution of the
drum. The speech sample is then played back over and over again in order to
analyze its spectral contents, For each revolution of the drum, the variable
electronic filter passes only a certain band of frequencies, and the energy in
this frequency band activates the electric stylus so that a straight line of varying
darkness is produced across the paper. The darkness of the line at any point
on the paper indicates how much energy is present in the speech signal at
the specified time within the given frequency band. As the drum revolves, the
pass-band of the variable electronic filter moves to increasingly higher fre-
quencies, and the electric stylus moves parallel to the axis of the drum. Thus,
a pattern of closely spaced lines is generated on the paper. This pattern, which
is the spectrogram, has the dimensions of frequency, time, and amplitude (see
Figure 7). The following paragraphs describe the operation of the sound
spectrograph in greater detail.

Figure 18 shows a block diagram of an early commercial sound spectrograph.?
In the record mode, a speech signal having a duration of less than 2.4 sec is
recorded on the side of a rotating magnetic drum. The highest recorded fre-
quency is about 8 kHz. During the reproduce mode, the magnetic drum re-
volves 3.33 times as fast as it does during the record mode, so that the highest
reproduced frequency is 3.33 x 8 = 26.6 kHz. The reproduced signal is usually
equalized to compensate for the falling spectrum of voiced speech sounds (see
Chapter II), and then the signal is modulated with the output of a variable
oscillator. Attached to the magnetic drum is a marking drum which holds a
sheet of teledeltos paper. This paper, on which the spectrogram is to be re-
corded, blackens at points where a high-frequency current is passed through
it. As the marking drum rotates, a stylus is passed across the teledeltos paper
by means of a worm gear which is mechanically coupled to the drums. An
additional coupling link controls the variable oscillator so that its frequency is
linearly proportional to the position of the stylus.

The output of the modulator is applied to one of two bandpass filters. These
filters have different bandwidths but are both centered on 35 kHz. When the
stylus is in its initial position on the worm gear, the frequency of the variable
oscillator is 35 kHz, so that there is an output from the bandpass filter only for
a reproduced signal of zero frequency. Similarly, when the stylus is in its final
position, the frequency of the variable oscillator is 61.6 kHz, and there is an
output only for a reproduced frequency of 61.6 — 35.0 = 26.6 kHz (highest
reproduced frequency). Thus, the stylus first records the amplitude variations
of the lowest frequency components of the speech signal. As the stylus moves
gradually across the teledeltos paper, it records the amplitude variations of in-

2This sound spectrograph was manufactured by the Kay Electric Company, Pine Brook,
New Jersey, and was marketed under the name Sona-Graph.
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Ficure 18. Block diagram of early commercial sound spectrograph.

creasingly higher frequency components, until the entire spectral range is
finally covered. The output of the bandpass filter is led to the stylus via a
range compressor which has the function of reducing the dynamic range of
the signal from a nominal value of 40 dB to about 10 dB. The teledeltos paper
cannot accommodate a wider dynamic range.

This sound spectrograph is calibrated so that one dimension of the resulting
spectrogram has a linear 0-8 kHz frequency scale, the other dimension has a
0-2.4 sec time scale, and the darkness of the mark indicates relative amplitude.
The two bandpass filters provide effective analyzing bandwidths of 300 Hz
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and 45 Hz; the corresponding spectrograms are referred to as wide-band and
narrow-band spectrograms. While both types of spectrograms are useful in
speech research, only wide-band spectrograms are employed for speaker recog-
nition. Because the wider bandpass filter can still resolve events that are
separated by only about 5 msec, wide-band spectrograms show the individual
vibratory cycles of the vocal folds as vertical striations. The formants are shown
as curved horizontal bars. For this reason, a wide-band spectrogram is also
called a bar spectrogram.

With the sound spectrograph just described, it takes about five minutes to
prepare one spectrogram. Efforts to reduce this time, and to improve the
quality of the spectrogram, have resulted in the high-speed sound spectrograph®
(Presti, 1966). A block diagram of this instrument is shown in Figure 19. In-
stead of recording on a magnetic drum, a loop is formed from the magnetic tape
containing the speech signal to be analyzed. If the tape was recorded at 7.5 ips,
the loop will include up to 2.4 sec of speech signal. The loop is scanned by a
rotating reproduce head at 12 x 7.5 ips. Assuming the highest frequency
recorded at 7.5 ips to be 7 kHz, the highest reproduced frequency is 12 x 7
= 84 kHz. The reproduce head is mechanically coupled to the marking drum,
and the reproduced signal is equalized and then modulated with the output
of a variable oscillator.

The frequency of the variable oscillator depends on the position of the
stylus on the worm gear. There is a choice between a linear and a logarithmic
frequency scale; in both cases the oscillator covers the frequency range 126-210
kHz. This sound spectrograph uses three modulators. The output of the first
modulator is applied to a 126-kHz bandpass filter. Because of its relatively
high center frequency, this filter has very steep attenuation characteristics
which improve the frequency resolution of the spectrogram. The function of
the second modulator is to convert the frequency of the signal from 126 kHz to
30 kHz; the subsequent analyzing bandpass filters operate at 30 kHz. It is
necessary to detect the output of the selected bandpass filter in order to
accommodate an amplitude quantizer, described below. The third modulator
gates a 12-kHz carrier according to the output of either the detector or the
amplitude quantizer, and the modulated signal is used to mark the teledeltos
paper.

The amplitude quantizer ( Prestigiacomo, 1962) converts the detected (i.e.,
rectified and smoothed ) signal into a sequence of narrow pulses. Whenever the
amplitude of the input waveform passes through any one of eight levels that
are separated by 6 dB, either in the direction of increasing amplitude or in the
direction of decreasing amplitude, a pulse occurs at the output. Thus, the
pulses are more closely spaced for rapid changes in amplitude than for slow
changes in amplitude. As the stylus moves along the worm gear, and the effec-
tive center frequency of the analyzing bandpass filter is increased, the pulse

3The high-speed sound spectrograph is manufactured by the Voiceprint Laboratories,
Somerville, New Jersey.
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Ficure 19. Block diagram of high-speed sound spectrograph. (Adapted, by permission,
from Presti, 1966.)

marks on the teledeltos paper trace out a pattern of equal-amplitude contours.
This pattern is called a contour spectrogram.
A comparison between wide-band bar and contour spectrograms of an
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identical utterance is shown in Figure 20. It will be noted that the contour
spectrogram has greater amplitude resolution but less temporal resolution*
than the bar spectrogram. The contour spectrogram makes almost no demands
on the dynamic range of the teledeltos paper; the increasingly darker shadings
of higher-level amplitude contours, which aid in visually differentiating be-
tween amplitude maxima and minima, may be eliminated without incurring a
loss of information.

The sound spectrograph has several limitations. A basic characteristic of
all spectrum analyzers is that their frequency resolution can be increased only
at the expense of temporal resolution, and vice versa. The capability of a
particular instrument to resolve frequency differences and temporal events is
determined primarily by the bandwidth of its analyzing bandpass filter. Al-
though the sound spectrograph contains two bandpass filters, the choice of
either filter represents a compromise. Some forms of speaker variability are
probably displayed better in the narrow-band spcctrogram, while other forms
are displayed better in the wide-band spectrogram. Thus, one limitation of
the sound spectrograph is that only certain features of the speech signal can
be revealed at one time. Those features that might eventually prove to be the
most useful ones for differentiating among speakers are not necessarily revealed
in either the narrow-band or the wide-band spectrogram.

Because of the finite resolving power of the sound spectrograph, it is
possible that spectrograms prepared from slightly different utterances of the
same word cannot be told apart by human observers. While the differences
among the utterances would be evident in oscillographic recordings, which de-
scribe the utterances most completely, these differences may be obscured by
the sound spectrograph. Therefore, when two spectrograms appear to be
identical in all respects, it cannot be concluded that they must necessarily
represent the same speech signal. This limitation can be particularly severe
in cases where the speech signals under analysis arc distorted (e.g., band
limited) or embedded in noise.

C. VARIABLES OF SPEAKER RECOGNITION

The procedure used in this method of speaker recognition is as follows:
Speakers are recorded reading selected words or phrases that serve as cue ma-
terial, bar spectrograms are prepared from the recordings, two or more spectro-
grams of different utterances of the same cue material are presented to trained
observers, and the observers carry out a recognition task. As in the method of
speaker recognition by listening, each step in this procedure introduces many
variables which can affect the ability of the observer to match spectrograms
that represent the same speaker. The most important variables will now be
described in detail; it will be noted that some of them resemble the variables
considered in Chapter III.

4The detected signal is subjected to additional lowpass filtering in the amplitude quantizer.
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1. Size and Homogeneity of Speaker Group

Studies by Kersta (1962b), Young and Campbell (1967), and Stevens, Wil-
liams, Carbonell, and Woods (1968) have demonstrated that some speakers are
considerably more difficult to identify by their spectrograms than other
speakers. In one experiment (Stevens, Williams, Carbonell, and Woods, 1968),
observers were required to match a spectrogram representing a speaker to be
identified with one of eight reference spectrograms. Each reference spectro-
gram represented a different adult male speaker. The results of this experiment
are shown in Figure 21. The solid bars indicate the percentage of error, aver-
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Ficure 21. Percent error, averaged over cue materials and observers/listeners,
for individual speakers in visual/aural eight-choice identification tests. ( Reprinted,
by permission, from Stevens et al., 1968.)

aged over various cue materials and six observers, for each of the eight refer-
ence speakers. (The cross-hatched bars pertain to an analogous experiment
using speech samples and listeners; the results of the two experiments will be
compared in Section F.) Thus, Speaker 7 was correctly identified much more
often than Speaker 2. The results of other experiments (Kersta, 1962b; Anon.,
1965) suggest that, on the average, female speakers are as easy to identify as
male speakers. Because of the large variance in the identifiability of individual
speakers, the speaker group should be as large as is practically possible.

The speaker group should also be somewhat homogeneous. With respect to
the method of speaker recognition by listening, the term homogeneity refers
to the perceptual similarity among the voices heard in a particular test. Here,
on the other hand, the term refers to the similarity in appearance among the
spectrograms of the speakers participating in a test. Very little is known about
the perceptual and physical correlates of this kind of speaker homogeneity. It
is possible that speakers who have similar sounding voices do not produce
similar appearing spectrograms. Thus, the criteria used to select a fairly
homogeneous speaker group for a listening test may be inappropriate for a
test involving comparisons of spectrograms.
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2. Selection of Cue Material

Several studies have used as cue material the ten words most frequently
occurring in telephone conversations: I, you, it, me, on, the, is, and, a, and to
(Kersta, 1962a, 1962b; Anon., 1965; Young and Campbell, 1967). Stevens,
Williams, Carbonell, and Woods (1968) used a number of monosyllabic and
disyllabic words, a phrase, and a sentence. It has been repeatedly demonstrated
that some cue materials are better vehicles for identification than others. This
effect is illustrated in Figure 22. The solid bars indicate the percentage of
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Ficure 22. Percent error, averaged over speakers and observers/listeners,
for cue materials in visual/aural eight-choice identification tests. (Reprinted,
by permission, from Stevens et al., 1968.)

error, averaged over eight speakers and six observers, for each word, phrase,
or sentence. Spectrograms of the monosyllabic word that were more often in-
correctly matched than spectrograms of any other item. As shown in Figure 23,
the observers’ performance was proportional to the duration of the cue ma-
terial. The highest level of performance was reached with the relatively long
phrase and sentence, and the lowest level occurred with the short, mono-
syllabic words.

For disyllabic cue words, performance also appears to depend on the vowel
receiving the primary phonetic stress (Stevens, Williams, Carbonell, and
Woods, 1968). Figure 24 shows how words with stressed front vowels (see
Table 1) make better vehicles for speaker identification than words with
stressed back vowels. This finding may be explained in terms of the gross spec-
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tral features of front and back vowels. The frequency of the second formant
determines the relative prominence of the high-frequency portion of the vowel
spectrum (Stevens and House, 1961 ). Since the second-formant frequency is
high for front vowels and low for back vowels (see Table 4), front vowels
tend to have more high-frequency energy than back vowels. Considering that
the sound spectrograph has a fixed spectral equalization and operates within a
restricted dynamic range, a back vowel may be only partially recorded on the
spectrogram, and it may consequently convey less information to the observer.

There is some evidence that an observer’s performance can be increased by
allowing him to compare spectrograms of several cue words simultaneously
(Anon.,, 1965). For each participating speaker, the spectrograms of the differ-
ent words may be mounted on a single card. Although the observer still com-
pares corresponding spectrograms (i.e., spectrograms of the same cue word), he
may now be more able to generalize any noted differences, and perhaps to
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detect an atypical utterance that might have otherwise led to an error. This
situation is very similar to the one in which cue material of relatively long
duration is used. The observer’s decision is based on a more extensive sample
of each speaker’s spectrographic characteristics.

3. Context of Cue Material

Another variable affecting performance is the phonetic context in which the
cue material appears. Kersta (1962b) found that observers had more difficulty
sorting spectrograms of cue words according to speaker when the words were
uttered in context rather than in isolation. The effects of context were also
studied by Young and Campbell (1967), who conducted two experiments em-
ploying five male speakers. Each speaker recorded four isolated utterances of
each of the cue words me, you, and it, and four sentences, each of which con-
tained the cue words you and it. Spectrograms were prepared from all recorded
material. Ten observers were shown the 20 spectrograms of the cue word me
ordered according to speaker. Several features of the spectrograms that were
thought to be useful for speaker recognition were described and discussed.

In the first of the two experiments, the observers were given five spectro-
grams of the cue word you uttered in isolation. Each spectrogram served as a
model for one of the five speakers. The observers were then asked to identify
each of the remaining 15 spectrograms of the cue word you uttered in isolation
by comparing it against the models. The same procedure was followed for the
20 spectrograms of the cue word it uttered in isolation, and the results obtained
for the two cue words were combined.

In the second experiment, the observers worked with excerpts from the
20 spectrograms of the sentences. For each sentence uttered by a given speaker,
excerpted spectrograms of the cue words you and it were mounted on a single
card. The observers were given five such cards to serve as speaker models,
and then they were asked to identify each of the remaining 15 cards, as in the
first experiment. Table 12 shows the results of these two spectrogram-matching

TasLE 12, Results of two spectrogram-matching experiments employing cue words you
and it uttered in isolation and in context. (Reprinted, by permission, from Young and Camp-

bell, 1967.)

Correct Identification (%)

Speaker Words in Words in
Isolation Context

RC 97.0 26.6
MY 91.1 40.0
BB 86.3 33.3
JR 71.4 50.0
RK 46.4 36.6

Average 78.4 37.3
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experiments. The average performance of the observers was considerably lower
when the cue words were uttered in the context of a sentence than when they
were uttered in isolation. Also, the relative identifiability of the individual
speakers appears to depend on whether the cue words were uttered in isola-
tion or in context.

Young and Campbell mention two factors which might account for the ob-
served difference in overall performance. A word uttered in context tends to
have a shorter duration than the same word uttered in isolation, and since
performance is proportional to the duration of the cue material (see Figure
23), the second experiment would be expected to produce lower scores. The
other factor concerns the phonetic environment of the cue word. It will be re-
called from Chapter II that the acoustical properties of a sequence of
speech sounds depend somewhat on the identity of the preceding and follow-
ing speech sounds (coarticulation effects). Since the second experiment did
not provide a uniform phonetic environment for the cue words, it is reasonable
to suspect that coarticulation effects may have obscured the spectral features
used by the observers to differentiate among the speakers.

The effects of context on performance may be even greater than the data
of Table 12 suggest. In the first experiment, the spectrograms of the cue words
you and it were presented separately, but in the second experiment they were
presented together. If the excerpted spectrograms of the two cue words had
also been presented separately in the second experiment, the observer would
have had less information per test item and less opportunity to detect an oc-
casional atypical utterance. In addition, the likelihood that two speaker models
appear indistinguishable would have been increased. Any of these factors might
have reduced the observer’s performance even further.

4. Characteristics of Transmission Link

It is not always possible to prepare the spectrograms from high-quality
speech signals. In some situations, the speech signals may be available only
at the receiver of a communication system (e.g., the telephone), and the charac-
teristics of the transmission link may introduce various kinds of signal distortion
which could influence performance. In other situations, the speakers may have
uttered the cue material in a noisy environment, so that the speech signals are
degraded by noise. While signal distortion and noise have been regarded as
important variables, their effects on performance have not been studied
systematically. It has been suggested that the primary limitation imposed by
the telephone system, namely bandpass filtering, is not detrimental to this
method of speaker recognition (Anon., 1965).

The greatest effect of a given form of signal degradation would be expected
to occur in experiments in which only some of the spectrograms are prepared
from degraded speech signals. Consider an experiment involving several
reference spectrograms representing different speakers, and a number of test
spectrograms to be identified. If one of the reference spectrograms and some of
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the test spectrograms are prepared from degraded speech signals, but the re-
maining spectrograms are prepared from high-quality speech signals, the ob-
server may not be able to distinguish between the spectral features attributable
to individual speakers and those attributable to the signal degradation. Thus,
he may be inclined to match spectrograms on the basis of the presence or ab-
sence of signal degradation, and his performance may be reduced accordingly.

5. Type of Visual Display

Kersta (1962a, 1962b) studied the ability of observers to sort spectrograms
into groups that represent different speakers. In one series of experiments, the
observers were given spectrograms of four utterances of a particular cue word
by either 5, 9, or 12 male speakers (i.e., a matrix of 4 x 5, 4 x 9, or 4 x 12
spectrograms ), and they were instructed to arrange the spectrograms into as
many piles as there were speakers. Both bar and contour spectrograms were
used in separate experiments. The results, shown in Figure 25, suggest that the
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bar spectrogram is a better visual display for speaker recognition than the
contour spectrogram. This finding may be related to the fact that the contour
spectrogram does not provide as much temporal resolution as the bar spectro-
gram (see Section B).

Some investigators believe that the low-frequency region of the bar spectro-
gram (below about 3 kHz) is more important for speaker recognition than
the high-frequency region. The lower formants of the speech signal are known
to make extreme frequency excursions from one speech sound to the next,
whereas the higher formants are relatively stable. It has been argued that the
traces of the lower formants in the spectrogram therefore encompass most of
the speaker variability. In order to allow a more detailed examination of the
low-frequency region of the spectrogram without sacrificing the overall fre-
quency range, some investigators use the logarithmic frequency scale of the
sound spectrograph almost exclusively ( Anon., 1965).
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Conventional spectrograms are not the only useful visual displays of the
speech signal. Pickett (1968) summarized the research on various other visual
displays that have been developed to aid the deaf; some of these displays may
also be applicable to the problem of speaker recognition. No study has been
undertaken with the specific objective of finding a more optimal visual display
for the present purpose than the bar spectrogram. Furthermore, the possible
advantages of combining an appropriate auditory signal with the visual dis-
play have not been sufficiently explored.

A simple experiment by Ungeheuer (1965) will serve as an example of
how speaker recognition may be accomplished with a special type of visual
display. In this experiment, the speech signal was first amplitude normalized
and then processed by two parallel channels, each of which consisted of a
bandpass filter, a rectifier, and a 1.5-sec integrator. The two filters covered the
frequency ranges 63-710 Hz and 1.4-2.8 kHz. The outputs of the integrators
were applied to the horizontal and vertical inputs of an oscilloscope. For the
duration of a speech sample by a particular speaker, the oscilloscope screen was
photographed on a single sheet of film. The resulting display, which was called
intensity club because of its general shape, was found to differ slightly among
speakers.

6. Number of Reference Spectrograms

In experiments using reference spectrograms, the performance of an observer
can usually be increased by providing him with more than one reference
spectrogram for each participating speaker. The use of several reference
spectrograms for each speaker allows the observer to consider intraspeaker
variability as well as interspeaker variability. He is now in a better position to
determine whether a feature of a test spectrogram is unique to the speaker
represented by the test spectrogram or is occasionally also found in spectro-
grams representing other speakers.

Instead of presenting all reference spectrograms simultaneously, it is possible
to present one set at a time (i.e., one spectrogram for each speaker), and to
have the observer repeat his task with each new set. When the reference spec-
trograms are used in this manner, the observer is presumably unable to estimate
the intraspeaker variability. The expected advantage of having all reference
spectrograms available at the same time has not been formally demonstrated.

7. Size and Training of Observer Group

The ability to match test spectrograms to the proper reference spectrograms
varies considerably from observer to observer. Figure 26 shows the results of
the previously described experiment by Stevens, Williams, Carbonell, and
Woods (1968), averaged over the speakers and the cue materials. The solid bars
indicate the percentage of error for each of the six observers; it is apparent that
Observers 4 and 5 reached a higher level of performance than any other observer.
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Ficure 26. Percent error, averaged over speakers and cue materials, for
individual observers/listeners in visual/aural eight-choice identification tests.
(Reprinted, by permission, from Stevens et al., 1968.)

Young and Campbell (1967) obtained similar results. There are no reported
studies explaining why some observers are more successful than others. Differ-
ent observers may pay attention to different spectral features, weigh certain
features differently, and apply different rules to arrive at their decisions.

From a practical point of view, the performance of an observer group can be
optimized by selecting highly capable observers on the basis of preliminary
tests. Another procedure for increasing overall performance involves combin-
ing the various decisions made by different observers for a particular test
spectrogram to obtain a group decision. Stevens, Williams, Carbonell, and
Woods (1968) found that a simple majority vote reduced the error score for
the cue word sidewalk from 18% to 3%, and for the cue word dovetail from
36% to 22%.

Because of the individual differences in performance, the observer group
should be as large as possible. Both male and female observers may be used.
In several experiments (Kersta, 1962a, 1962b ), the observers were female high-
school students who worked in teams of two. This pairing of observers was
found to increase the overall performance, probably on account of an exchange
of information about decision strategies.

One of the most important variables of this method of speaker recognition is
the training of the observer group. Unlike the training of listeners, which is
undoubtedly facilitated by each listener’s prior experience with different voices,
the training of observers must deal with the problem of interpreting a novel
visual display. The requirements for an optimal training program cannot, as
yet, be specified. It is not known, for example, to what extent the spectrogram
should be explained to the observers. While many investigators explain how
various aspects of the speech signal are portrayed in the spectrogram, other
investigators prefer that the observers regard the spectrogram as an arbitrary
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display of acoustic energy. There is also no agreement on which spectral
features are most useful for speaker recognition; different investigators empha-
size different features in training their observers.

The duration of the training program determines how much skill and
confidence each observer can acquire. Kersta (1962a, 1962b) trained one group
of listeners for five days, which is not considered an overly long training pro-
gram. Presently, Kersta is offering an intensive two-week course in the interpre-
tation of spectrograms (voiceprints).?

8. Task Assigned to Observers

The task assigned to the observer may also influence performance. Observer
tasks usually involve direct comparisons of spectrograms.® These tasks may
be grouped into two classes on the basis of the number of spectrograms used
per test item, One class includes all tasks in which the observer compares
only two spectrograms for each test item, and the other class includes all tasks
in which he compares three or more spectrograms.

When the observer is given only two spectrograms, he may be asked to rate
their level of similarity. Or he may be assigned the task of deciding whether
the spectrograms are similar enough to represent the same speaker. In the
latter case, it is assumed that the observer makes use of an internal decision
threshold, which is different for different observers. The decision threshold can
be taken into account by requiring the observer to rate his confidence in the
correctness of his decision. The observer’s dual responses on a large number
of test items are often analyzed to produce a ROC curve, as described in
Chapter IIIL

In most of the tasks for which the observer is given three or more spectro-
grams, a test spectrogram is compared with several reference spectrograms.
Each reference spectrogram usually represents a different speaker. The speak-
er who is represented by the test spectrogram may or may not be also repre-
sented by one of the reference spectrograms. If he is represented among the
reference spectrograms, he may be identified by having the observer decide
which reference spectrogram is most similar to the test spectrogram. In another
task, the observer may be asked to rate the levels of similarity between the
test spectrogram and each of the reference spectrograms. There are some tasks,
however, in which the observer compares all spectrograms jointly. For example,
the observer may be required to sort the spectrograms into a given number of
groups representing different speakers.

5 For information on this course, write to L. G. Kersta, Voiceprint Laboratories, Somerville,
New Jersey.

61t is conceivable that a very experienced observer can examine a single spectrogram and
identify the represented speaker by relying on his long-term memory of the spectral features
exhibited by particular speakers. Also, an observer may be able to rate a single spectrogram
on several scales that inquire about the perceptual dimensions of the visual pattern. Such
tasks, however, have not been used to date.
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D. TEST FORMATS

The variables described above are controlled by a particular test format.
Three of the most commonly used test formats will be outlined and discussed
in this section. There are obvious analogies between these test formats and
certain formats discussed in Chapter III. Because of the nature of this method
of speaker recognition, one test format does not have significant advantages
over another. For example, all spectrograms constituting a given test item are
typically presented simultaneously, so that there are no short-term memory
effects. Similarly, all tests are about equally demanding with respect to their
preparation. Instead of describing minor advantages and limitations, this sec-
tion will concentrate on the various applications of the tests.

1. Multiple-Choice Identification Test

In the multiple-choice identification test, the observer is given one or more
labeled reference spectrograms for each participating speaker. These reference
spectrograms remain with the observer until he has responded to all test items.
Each test item consists of a test spectrogram representing a speaker to be
identified. The speaker represented by the test spectrogram is known to be
also represented by one of the reference spectrograms. Thus, the observer has
only to decide which reference spectrogram is most similar to the test spectro-
gram in order to identify the speaker represented by the test spectrogram. With
this test, it is possible to treat one cue word at a time, or to treat several cue
words simultaneously. In the latter case, the spectrograms of the different cue
words uttered by each speaker may be mounted on a single card.

This test is well suited for exploring the variables of speaker recognition de-
scribed in Section C. Many experimental studies have used the test to determine
how selected variables should be managed to optimize the overall performance.
However, the test has very few practical applications. In most practical situa-
tions, there is no assurance that the speaker to be identified is represented by
one of the available reference spectrograms.

2. Discrimination Test

The discrimination test does not employ reference spectrograms. Each test
item consists of two spectrograms, and the observer is asked to decide whether
these spectrograms represent the same or different speakers. In many cases,
the observer is also required to rate his confidence in the correctness of his de-
cision. Consecutive test items usually involve different cue words. Although
this test has been used for experimental purposes, its most often cited applica-
tion is in the field of criminology, where it serves as an investigative tool.

This application of the test employs the following procedure: Suppose an
obscene telephone call has been recorded, and a recording by a person who is
suspected of having made the call is also available. First, the two recordings
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are carefully transcribed to facilitate the search for suitable cue material.” In the
selection of cue material, if there are only a few words common to both re-
cordings, it may be necessary to include phonetically identical portions of
different words. Pairs of spectrograms are then prepared for all selected cue
materials, The observer examines each pair of spectrograms and determines
the degree of similarity of the spectral features. One of three possible decisions
is finally rendered; either the two recordings are ascribed to the same speaker,
they are ascribed to different speakers, or the results are considered inconclu-
sive. The third decision is made if there is a scarcity of cue material, or if the
speech signal is severely degraded.

When the two recordings are ascribed to the same speaker, a display of
several pairs of spectrograms may be prepared for the purpose of justifying
this decision to laymen. Such displays have been exhibited and accepted as
evidence in courts of law (Borders, 1966; McDade, 1968). Figure 27 shows a

Ficure 27. Display consisting of two spectrograms of the diph-
thong [a1] and a sketch of the gross pattern common to both spec-
trograms. (Reprinted, by permission, from Ladefoged and Vander-
slice, 1967.)

display consisting of two spectrograms of the diphthong [ai] and a sketch of
the gross pattern common to both spectrograms. The left-hand spectrogram
was prepared from a televised interview of an unidentified youth who admitted
to the crime of arson, and the right-hand spectrogram was prepared from a

7In listening to the two recordings, the investigator may use an informal version of the
discrimination test described in Chapter III to estimate the likelihood that the recordings
represent the same speaker. This estimate, which is indesendent of the results based on
comparisons of spectrograms, may or may not be considered in arriving at the final decision.

Hecxker: Speaker Recognition 67



recorded interrogation of Edward Lee King. On the basis of this and other
evidence, King was convicted and sentenced to prison (McDade, 1968).

3. Identification-Discrimination Test

This test has some of the properties of the multiple-choice identification test
and some of the properties of the discrimination test. Like the multiple-choice
identification test, it uses reference spectrograms and test spectrograms, but
the speaker represented by a given test spectrogram is not necessarily also
represented by one of the reference spectrograms. The observer must therefore
make two decisions; he must decide which reference spectrogram is most simi-
lar to the test spectrogram, and whether the selected reference spectrogram
and the test spectrogram represent the same speaker. The latter decision is
identical to the decision required in the discrimination test.

The identification-discrimination test has been used experimentally to de-
termine the reliability with which speakers can be authenticated. This appli-
cation of the test will be described in Section E. The most important practical
application is again in the field of criminology. Suppose an unknown voice
was recorded at the scene of a crime, and recordings were made of the inter-
rogation of several suspects. Assuming that all of these recordmgs have a few
words in common, test spectrograms may be prepared from the recording of
the unknown voice, and corresponding sets of reference spectrograms may be
prepared from the recordings of the suspects. For each test item (ie., cue
word), the observer determines the degree of similarity between the test
spectrogram and each of the reference spectrograms. After all test items have
been considered, the observer either identifies the speaker represented by the
test spectrograms or reports that he is unable to do so.

It is possible to envision situations in which the observer would have to deal
with a very large number of reference spectrograms. To avoid this problem,
Kersta (1965b, 1966) developed a technique for classifying spectrograms by
means of a computer. The technique reduces a given contour spectrogram of
a cue word to a ten-digit binary code. Because the technique is inherently crude®
and therefore relatively inaccurate, it cannot be used to replace the observer,
but it may greatly simplify his task. In the foregoing example, one or two of the
suspects might have been eliminated on the basis of their classification codes,
so that the test would involve fewer reference spectrograms.

E. OBSERVER FALLIBILITY

The fallibility of the observer is a crucial issue because of the legal use of
this method of speaker recognition (Borders, 1966; Ladefoged and Vander-
slice, 1967, McDade, 1968; Bolt et al., 1970). Although a machine (the sound

81In order to minimize variability due to context, the technique is used only on those por-
tions of cue words exhibiting the smallest spectral changes with time (Anon., 1965). Thus,
the dynamic aspects of articulation, which are known to reflect important speaker differences,
are purposely c})isregarded.
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spectrograph) is used to prepare spectrograms, the interpretation of spectro-
grams is an art rather than a science. When this fact is pointed out to the
members of a jury, they may be unable to evaluate the reliability of this means
of identification. In the first trial in which spectrograms were allowed as evi-
dence, the jury could not reach an agreement as to how much weight this
evidence should be given (McDade, 1968). The previously mentioned con-
viction of Edward Lee King was reversed by a Court of Appeals because
“. . . the voiceprint identification process has not reached a sufficient level of
scientific certainty to be accepted as identification evidence in cases where the
life or liberty of a defendant may be at stake . ..” (Kennedy, 1968).

The use of the term voiceprint, and the degree to which the analogy between
voiceprints and fingerprints has been emphasized (Kersta, 1962a, 1962b; Anon,,
1965; McDade, 1968), are rather unfortunate. There is an important but seldom
considered difference between spectrograms and fingerprints. As was demon-
strated in Chapter II, the intraspeaker variability of the speech signal can be
substantial, and this variability is, of course, reflected in spectrograms repre-
senting a particular speaker. The variability exhibited by a particular person’s
fingerprints, on the other hand, is essentially zero (Ladefoged and Vanderslice,
1967; Bolt et al., 1970). Most of this variability is due to the fact that inad-
vertently left fingerprints are often incomplete or smeared. As a means of
identification, fingerprints must be regarded as being considerably more fool-
proof than spectrograms (Anon., 1965).

Claims by Kersta and others of the reliability of this method of speaker
recognition are based largely on the results of unpublished experiments. Thus,
the scientific community cannot appraise the design of these experiments and
the validity of the conclusions reached (Ladefoged and Vanderslice, 1967).
The results of one series of published experiments (Kersta, 1962b) could not
be duplicated by other investigators. Young and Campbell (1967), and also
Stevens, Williams, Carbonell, and Woods (1968 ), obtained much higher error
scores than those reported by Kersta (1962a, 1962b). Such disagreements make
the publication of detailed descriptions of future experiments extremely de-
sirable.

In the first experiments concerned with reliability, the observers were re-
quired to sort spectrograms into groups representing different speakers (Kersta,
1962a, 1962b). Later experiments used the multiple-choice identification test
(Kersta, 1962c; Young and Campbell, 1967; Stevens, Williams, Carbonell, and
Woods, 1968 ). There have been no reports of experiments using the discrimina-
tion test, which is commonly used in criminal proceedings. Ladefoged and
Vanderslice (1967) argued that the reliability of the discrimination test cannot
be predicted from the results of the published studies.

It has been claimed that performance is essentially unaffected by the loss
of teeth, tonsils, or adenoids, the aging process, and attempts to disguise the
voice, such as changing the fundamental frequency, whispering, mimicking
another voice, or ventriloquism (Kersta, 1962c; Anon., 1965). However, in the
absence of supporting experimental data, these claims cannot be considered
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established facts. When the characteristics of the transmission link are un-
favorable, so that the speech signal is degraded (see Section C4), many of the
above-mentioned factors may be expected to reduce the reliability of this
method.

According to Kersta (1962b) and others (Anon., 1965), the probability that
two speakers have similar enough vocal-tract dimensions and articulation pat-
terns to produce indistinguishable spectrograms is extremely small. This be-
lief, which appears to underlie many experiments, has not been formally
translated into a hypothesis that can be tested with a finite population of speak-
ers, There is evidence that two arbitrarily selected speakers can occasionally
produce very similar spectrograms (Ladefoged and Vanderslice, 1967). This
situation is illustrated in Figure 28 for the cue word you. Findings of this kind
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Ficure 28. Similar spectro%rams of the word
you, uttered by two arbitrarily selected speak-
ers. (Reprinted, by permission, from LadeE)ged
and Vanderslice, 1967.)

suggest that the range of one speaker’s pronunciations of a given cue word (in-
traspeaker variability) may partially overlap the range of another speaker’s
pronunciations of the same cue word, and argue for the use of a large number
of cue words in making an identification. There is also evidence of considerable
similarity among spectrograms representing different members of a family
(Kersta, 1965a ), suggesting further sources of observer fallibility.

Stevens, Williams, Carbonell, and Woods (1968) examined the ability of
observers to distinguish between familiar and unfamiliar speakers in a 32-item
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identification-discrimination test. The observer was given eight reference spec-
trograms representing eight familiar speakers. There were two experimental
conditions; either 4 or 16 of the 32 test spectrograms represented unfamiliar
speakers who were not represented by the reference spectrograms. The results
of this study are shown in Table 13. Most of the familiar speakers were recog-

TasLE 13. Percent correct recognition of familiar and unfamiliar male speakers by visual
comparison of spectrograms. Data are shown for two experimental conditions. (Reprinted, by
permission, from Stevens et al., 1968.)

4 of 32 Test Items by Unfamiliar Speakers

Recognized As
Speaker Familiar Unfamiliar
Familiar 80 20
Unfamiliar 31 69

16 of 32 Test Items by Unfamiliar Speakers

Recognized As
Speaker Familiar Unfamiliar
Familiar 90 10
Unfamiliar 47 53

nized as such and correctly identified. Many of the unfamiliar speakers, how-
ever were erroneously recognized as familiar speakers, especially when they ap-
peared as often as the familiar speakers.

In view of the use of this method of speaker recognition in courts of law,
the fallibility of the observer must be studied further (Bolt et al., 1970). De-
tailed descriptions of future experiments should be published or otherwise made
available to the scientific community. Claims should be clearly differentiated
from proven facts, and statements regarding the analogy between this method
and fingerprinting should include appropriate qualifications. Although this
method has obvious potential in various investigative and forensic applications,
its reliability as a means of positive identification has not yet been sufficiently
evaluated to allow its use at the level of confidence attributed to fingerprinting.

F. COMPARISON WITH SPEAKER
RECOGNITION BY LISTENING
Certain properties of the speech signal, such as the formant structure in a
vocalic interval and the spectral distribution of fricative noise, are more dis-
cernible in a spectrogram than in an auditory presentation (Potter, Kopp, and
Green, 1947; Anon., 1965). This does not mean, however, that speaker recogni-
tion by visual comparison of spectrograms is inherently more accurate than
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speaker recognition by listening. In fact, there is evidence indicating that the
reverse is true,

Stevens, Williams, Carbonell, and Woods (1968) compared the two methods
of speaker recognition with a single speaker group and a single observer/listener
group under closely matched experimental conditions. Recorded utterances of
various cue materials by cight selected male speakers were used to construct
both visual and aural eight-choice identification tests. In order to match the
format of the visual tests, the aural tests used the free-comparison mode of pre-
sentation. Six experimental subjects served as observers and listeners in these
tests. Each subject was required to identify the speaker represented by a given
test itcm and to rate the level of confidence with which he made this decision.
He was allowed as much time as he needed to reach a decision, but a record
was kept of the time expended.

It was found that the visual tests produced considerably higher error scores
than the aural tests. Also, the confidence ratings were lower and the average
time taken per test item was greater for the visual tests. These results suggest
that speaker recognition by listening is the more accurate method, possibly
because the observer’s task is more difficult than the listener’s task.

The errors made on both types of tests in identifying the individual speakers
are compared in Figure 21. It is apparent that all speakers could be identified
better with the aural tests than with the visual tests. The two speakers who
were most often correctly identified in the aural tests (Speakers 1 and 7) were
also most often correctly identified in the visual tests. Similarly, the speaker
who was least identifiable in the aural tests (Speaker 2) was also least identi-
fiable in the visual tests. Thus, there is evidence that the relative identifiability
of different speakers is largely independent of the method employed.

Figure 22 compares the errors made on both types of tests in identifying the
speakers by means of particular cue material. The cue materials are arranged
according to the level of performance achieved on the aural tests; the highest
level of performance (lowest error score) was obtained for the phrase A base-
ball glove. There is no indication that the data for the two types of tests are
correlated. Cue materials that are good vehicles for aural identification are not
necessarily good vehicles for visual identification, and vice versa.

As shown in Figure 23, the duration of the cue material was found to be an
important variable in the visual tests, but not in the aural tests. For the visual
tests, there is a progressive reduction in error scores as the duration of the cue
material is increased. For the aural tests, however, there is a reduction only
until the disyllabic cue words are reached. The average duration of these
words was slightly less than 1 sec. Thus, the results of the aural tests are in
agreement with the findings of Pollack, Pickett, and Sumby (1954), which are
presented in Figure 12.

Figure 24 shows that disyllabic cue words with stressed front vowels are
better vehicles for both visual and aural identification than disyllabic cue words
with stressed back vowels. The front-vowel superiority appears to be less pro-
nounced for the aural tests. This may be because the aural tests are not con-
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fined to the relatively narrow dynamic range encompassed by the bar spectro-
gram. The inherently reduced high-frequency energy of back vowels may still
be audible, but have insufficient amplitude to register in the spectrogram.

Figure 26 compares the errors made on both types of tests by the individual
subjects (observers/listeners). The subjects are arranged according to the
level of performance they achieved on the aural tests. Again, the data for the
two types of tests do not appear to be correlated. Subjects who are especially
capable listeners are not necessarily especially capable observers, and vice
versa.

Stevens, Williams, Carbonell, and Woods (1968) also used identification-
discrimination tests in comparing the two methods of speaker recognition. These
tests involved only the cue words sidewalk and dovetail. The eight speakers
who participated in the identification tests were used as familiar speakers in the
identification-discrimination tests; 16 additional speakers were used as un-
familiar speakers. Four subjects served as observers and listeners in these
tests.

The results obtained with the aural tests and the visual tests are presented in
Tables 11 and 13, respectively. There were considerably more false acceptances
of unfamiliar speakers in the visual tests than in the aural tests. When only 4
of the 32 test items represented unfamiliar speakers, there were also more false
rejections of familiar speakers in the visual tests. Thus, speaker recognition by
listening was found to be the more accurate method.

As mentioned earlier, the training of observers is an important variable ot
speaker recognition by visual comparison of spectrograms. The subjects used
by Stevens, Williams, Carbonell, and Woods (1968) received only minimal
training. Before each subject started his first visual test, which was regarded
as a training test, he was given a brief explanation of the spectrogram. The
average error score for the first visual test was 28%. There was very little im-
provement in the scores obtained on subsequent visual tests, suggesting that the
subjects did not learn much about the interpretation of spectrograms as the
study progressed. Young and Campbell (1967) trained their observers by
showing them examples of several potentially useful spectral features. These
investigators obtained an average error score of 22%. It is possible that more
elaborate training procedures might lead to significantly lower error scores,
but whether future visual tests would provide lower error scores than future
aural tests is debatable.
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Chapter V

SPEAKER RECOGNITION BY MACHINE

A. INTRODUCTION

Two approaches have been used to study the feasibility of speaker recogni-
tion by machine. One approach is to have the machine generate and examine
amplitude-frequency-time matrices of specific cue material. The other approach
is to have the machine extract speaker-dependent parameters from the speech
signal and subject them to a statistical analysis. Each approach has led to a
number of recognition techniques which will be described in detail. Some
comments will then be made about the fallibility of speaker recognition by
machine. A comparison between this method and speaker recognition by
listening will also be made.

B. TECHNIQUES USING SPECIFIC CUE MATERIAL

In the recognition techniques to be described in this section, an amplitude-
frequency-time matrix of specific cue material is prepared for each speaker,
and these matrices are compared by means of a decision rule. Various cue mate-
rials have been used, including phrases, words excerpted from context, and
even single phonemes (speech sounds) excerpted from context. For a given
comparison, all data matrices represent the same phrase, word, or phoneme.
The general procedure underlying these techniques will be outlined before ex-
perimental studies are described.

1. General Procedure

The utterances of specific cue material are usually processed by a spectrum
analyzer consisting of a bank of bandpass filters, rectifiers, and smoothing
circuits. The outputs of the analyzer are periodically sampled and amplitude
quantized for further processing by a computer. Each utterance is represented
in the computer by a data matrix having the format shown in Figure 29. The
rows of the matrix correspond to the frequency bands of the spectrum analyzer,
the columns correspond to the temporal locations of the sampled spectra, and
each matrix cell describes a measured amplitude level. Such a matrix may be
regarded as a digital spectrogram.
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Ficure 29. Format of data matrix used to represent an utter-
ance of cue material. Each matrix cell gives the amplitude of
energy present in a specific frequency band during a specific
time interval,

The number of frequency bands used, the frequency range covered by these
bands, the duration of each time interval, and the number of levels used to
describe amplitude are variable. The number of time intervals used depends
on the duration of each interval and on the duration of the utterance repre-
sented. Before any comparisons between matrices are attempted, it is usually
necessary to normalize the matrices with respect to overall amplitude. This
may be accomplished by uniformly increasing or decreasing all cell values in
a given matrix until their sum is equal to a constant.

For each phrase, word, or phoneme used, several matrices representing dif-
ferent utterances by the same speaker are combined to form a single reference
matrix for that speaker. A reference matrix is thus constructed for each speaker
participating in a recognition experiment. The speaker to be recognized is
represented by a test matrix. This test matrix usually represents a single utter-
ance, but it may also be constructed from several utterances. Depending on the
type of recognition to be performed, the test matrix is compared with all or only
one of the reference matrices. The degree of similarity between the test matrix
and each reference matrix is computed, and the results are used to arrive at a
decision.

There are two basic recognition tasks, identification and discrimination.
In the identification task, several reference matrices are used, and it is assumed
that the speaker represented by the test matrix is also represented by one of
the reference matrices. Thus, the reference matrix that is most similar to the
test matrix is expected to identify the speaker represented by the test matrix.
In the discrimination task, only one reference matrix is used, and the speaker
represented by the test matrix may or may not be represented by this reference
matrix. A decision threshold is selected to specify when the test and reference
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matrices are similar enough to represent the same speaker. Recognition tech-
niques using the discrimination task have been used to authenticate speakers
who claim a particular identity. Two kinds of errors are encountered in such
applications; a speaker who is, in fact, represented by the reference matrix
may be falsely rejected, and an imposter may be falsely accepted. The decision
threshold is often selected on the basis of an allowable percentage of false
rejections.

Different decision rules may be applied in comparing two matrices. Because
optimal decision rules cannot be practically implemented, several compromises
have been made in the form of relatively simple measures of similarity. One
of the most often used measures of similarity is an error measure, namely the
sum of the squared differences between corresponding cell values of the two
matrices considered. Thus,

N
€xs = 2 (Sx - SA)Z:

where N is the total number of cells in either Matrix X (test matrix) or Matrix
A (reference matrix representing Speaker A), 8y is the value of a particular
cell in Matrix X, and 8, is the value of the corresponding cell in Matrix A.

Some studies have used measures of the degree of cross correlation between
two matrices. One coeflicient of cross correlation is defined by

Ny

2 (8x — my) (84 —my)
Noyo,

y

Txa =

where my is the mean of all cell values in Matrix X, m, is the mean of all cell
values in Matrix A, oy is the standard deviation of the cell values in Matrix X,
and o, is the standard deviation of the cell values in Matrix A. This correlation
coefficient is particularly attractive because it does not require that the two
matrices be amplitude normalized.

Other decision rules may also be used. In a given comparison involving
several reference matrices, the application of different decision rules may lead
to different associations between the test and reference matrices. A numerical
demonstration of the dependence of matrix associations on decision rules is
presented in Table 14. Using the error measure, a greater similarity exists
between Matrix X and Matrix A than between Matrix X and Matrix B, but the
reverse is true when the respective matrices are cross-correlated.

Many recognition techniques are handicapped because of unavoidable in-
accuracies in the temporal alignment of different utterances. In two utterances
of the same word, especially if they were produced by different speakers, it is
rare that corresponding spectral features are synchronized in time (see Figure
7). Thus, when such utterances are aligned with respect to one spectral feature,
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TaBLe 14. Demonstration of dependence of matrix associations on decision rules. Matrix
X is associated with Matrix A when error measure is used and with Matrix B when correla-
tion coefficient is used.

Cell Cell Value () Comparison

Number A B X XA XB

1 21 30 21

2 19 30 21

3 20 20 20

4 21 10 19

3 19 10 19

b 100 100 100

N 5 5 5

m 20 20 20

o 2/V5 20/V5 2/vV5

¢ Error Measure 8 324 o

r Correlation Coefficient 0 1

they are usually not aligned with respect to other spectral features. This effect
is attributable in part to differences in speaking rate and in part to involuntary
articulatory perturbations. The problem of temporal alignment is encountered
in combining several matrices that represent the same speaker, and in compar-
ing test and reference matrices. Successive time intervals do not necessarily
sample corresponding spectral features.

2. Experimental Studies

A summary description of six recognition techniques using specific cue
material is presented in Table 15. For each experimental study, this table gives
the cue material used, the configuration of the data matrix, the number of
utterances included in the reference and test matrices, the recognition task,
the decision rules, the number of speakers involved, and an overall measure
of performance. These studies will be described more fully in the following
paragraphs. Particular attention will be given to the manner in which the
individual studies treat the problem of temporal alignment. Some studies inher-
ently depend on an accurate temporal alignment but provide insufficient control
over this variable; other studies either avoid the problem of temporal alignment
or attempt to deal with it directly.

Pruzansky (1963) used three matrix configurations: (1) an amplitude-fre-
quency-time configuration, as indicated in Table 15, (2) an amplitude-fre-
quency configuration, obtained by averaging over all time intervals, and (3)
an amplitude-time configuration, obtained by averaging over all frequency
bands. The average recognition scores achieved with these three configurations
were 89%, 89%, and 47%, respectively. The confusions which occurred among
individual speakers for the amplitude-frequency-time configuration and for
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the amplitude-frequency configuration are given in Tables 16 and 17. It is of
interest to note that although the average scores were identical for these two
configurations, both the distribution of errors and the relative identifiability
of individual speakers differed considerably. For the same two configurations,
Figure 30 shows the error scores obtained with each cue word. The speakers

TasLe 16. Confusions and recognition scores (in percent) for ten speakers when
identification is based on ampljtude-frequency-time matrices. (Reprinted, by permission,
from Pruzansky, 1963.)

Predicted Identity

Speaker = ) Sc;re
= X 8 & = % 3 E 8 2
MM 35 1 4 - - - - - - - 88
BM - 39 - 1 - - - - - - 98
PB - - 35 - 3 - - - 2 - 88
E Sp 1 1 - a7 - - 1 - - - 92
g M 1 - 6 - 30 - - - 1 1 77
Tﬁ RG - - 1 - 4 38 - - - - 88
::’ CL - - 2 2 - 1 30 1 1 1 79
LK 1 - - -~ - - - 37 - 1 95
LG - 1 - 2 - - - 1 35 - 89
NG -2 - - - - - - - 38 9o
Average Score : 89

TasLe 17. Confusions and recognition scores (in percent) for ten speakers when
identification is based on amplitude-frequency matrices. (Reprinted, by permission, from
Pruzansky, 1963.)

Predicted Identity s

Speaker core
T3 OE s 5 o2 8 3 0% % g F

MM 37 - - - - - - -2 1 9

BM ) 7 A | 1 - - 9

PB - - 3% - 3 3 - - 3 175

‘ SP - 1 - 38 - - - - 1 - 95
£ M - - 3 - 8B - - 1 2 - 85
S BRG - - - - 4 3 - - - - %
3y CL - - - - - - 3 2 1 1 87
R A ¢ - 1 - - - - - 34 2 2 87
LG - - 1 e 2 92

NG - - 1 A | - - 3 8
Average Score 89
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Ficure 30. Percent error, averaged over speakers, for individual cue
words. Data are shown for identification based on (a) amplitude-frequency-
time matrices, and (b) amplitude-frequency matrices. (Reprinted, by per-
mission, from Pruzansky, 1963.)

were correctly identified to a degree which depended not only on the particular
cue word used, but generally also on the matrix configuration. Because the
overall performance was not reduced by time averaging, it was concluded from
this study that the long-term spectrum for specific cue material uttered by a
particular speaker is distinctive.

Pruzansky and Mathews (1964) explored the feasibility of using only some
of the matrix cells in computing recognition scores. The matrix configuration
employed in the first part of this study is described in Table 15. For a given
cue word, the 30 matrices (with all cell values included) from which the ten
reference matrices were constructed were subjected to an analysis of variance
to determine for each cell a ratio of interspeaker to intraspeaker variance (F
ratio ). It was hypothesized that cells having large F ratios would contribute
more to correct identification than cells having small F ratios. Recognition
scores were computed for various percentages of the total number of cells
available for the given cue word. At first, only 1% of the cells having the largest
F ratios were used; then more and more cells having progressively smaller F
ratios were added, until all of the cells were finally used. The same process was
then repeated for cells having small F ratios, using at first only 1% of the cells
having the smallest F ratios and finally all of the available cells. The results
obtained, averaged over ten cue words, are shown in Figure 31. It is evident
that when the cells are used in order of decreasing F ratio (i.e., cells with high-
est F ratios are used first), there is little further improvement in performance
after only 10% of the cells have been included.

In the second part of their study, Pruzansky and Mathews modified the
earlier matrix configuration. F ratios were calculated for various matrices
having fewer cells; the cell values were obtained by averaging the values of
the former cells over several frequency bands, several 10-msec time intervals,
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Ficure 31. Percent correct identification as a function of the percentage
of matrix cells used, Data are shown for matrix cells having large and small
F ratios. (Reprinted, by permission, from Pruzansky and Mathews, 1964.)

or both. Recognition scores were then computed for these matrices, using a
variable number of cells having large F ratios. The highest score was obtained
for a matrix in which each cell encompassed one frequency band and all time
intervals. This finding was interpreted as evidence that time segmentation is not
essential for accurate speaker identification. It was also concluded that the
information contained in a given frequency band is relatively independent of
the contents of neighboring frequency bands, whereas the information con-
tained in a given time interval is largely dependent on the contents of neigh-
boring time intervals.

The study by Ramishvili (1965) differs from the two studies described above
in that it employed a coarser matrix (see Table 15). Fewer and much wider
frequency bands were used, the time intervals were much longer, and the
amplitude was specified much less accurately. Nevertheless, approximately the
same level of performance was achieved (92%). Perhaps the coarser frequency
segmentation and amplitude specification were offset by the inclusion of a
larger number of utterances in the reference matrices. Whatever the explana-
tion for the high scores may be, this study casts some doubt on the earlier
conclusion about the importance of high frequency resolution.

In the studies by Pruzansky (1963) and Pruzansky and Mathews (1964 ), and
presumably also in the study by Ramishvili (1965), the matrices representing
single utterances were aligned with respect to the time interval having the
highest overall amplitude. This method of temporal alignment is considered
extremely crude, and the resulting displacement of many spectral features may
have affected the results obtained for short time intervals. In the study by

Hecken: Speaker Recognition 81



Pruzansky, for example, a score higher than 89% might have been obtained for
the amplitude-frequency-time matrix if it had been possible to provide more
accurate temporal alignment. The temporal resolution of spectral features is
likely to benefit recognition only when the corresponding features of different
utterances are properly aligned. A given degree of misalignment is expected to
have less and less effect on performance as the time interval is increased;
it would have no effect for the amplitude-frequency matrix. Poor temporal
alignment also may have confounded the variables studied by Pruzansky and
Mathews. The general conclusions reached by these investigators about the
unimportance of time segmentation are therefore open to question.

Li, Dammann, and Chapman (1966) developed a recognition technique
that used adaptive switching circuits to implement the decision rules.! This
recognition system was trained to discriminate between utterances by a par-
ticular speaker and utterances by a group of imposters. Various forms of system
programming were studied, including different decision rules and decision
criteria. Many recordings of three cue phrases were used, and the number of
utterances represented by the reference matrix was varied. Under all experi-
mental conditions, the input data matrix consisted of 15 frequency bands and 25
time intervals (comprising a total duration of 500 msec). System performance
reached 90% if the reference matrix represented at least ten utterances and if
these utterances were originally recorded at different times, rather than in
succession.

These investigators used a voice-operated switch to detect the beginning
of each utterance entered into the recognition system. The switch triggered
a digital timing sequence which effectively accomplished an initial temporal
alignment. To ensure reliable operation of the switch, the cue phrases were
restricted to begin with a stressed vowel. Even if a reasonably accurate initial
alignment was achieved in this manner, it is Jikely that the subsequent displace-
ment of spectral features in different utterances had a detrimental effect on
performance.

The problem of temporal alignment may be avoided by using only one time
interval which coincides with the occurrence of a particular phoneme. The
recognition technique described by Glenn and Kleiner (1968) is based on a
spectral analysis of the nasal consonant [n]. Thirty speakers recorded two
different word lists containing numerous repetitions of this consonant, and
for each speaker and word list ten occurrences of [n] were selected by visual
inspection of spectrograms. Spectrographic sections (amplitude-frequency
plots) of the selected consonants were manually quantized for computer pro-
cessing. For each speaker, the spectral data representing one word list were
averaged to form a 25-cell reference matrix, and the spectral data representing
the other word list were averaged to form a 25-cell test matrix. When the
speaker population was divided into three 10-speaker groups, an overall iden-

1The general theory and operating characteristics of adaptive switching circuits have
been described by Widrow and Hoff (1960).
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tification score of 97% was obtained; when all speakers were involved simul-
taneously, the overall score was 93%. It was concluded that the power spectrum
generated during nasal phonation is highly speaker dependent.

Meeker (1967) viewed speech recognition (i.e., the identification of the
phonemes occurring in connected speech) as a prerequisite for successful
speaker recognition. A speech-recognition technique developed by Nelsor,
Herscher, Martin, Zadell, and Falter (1967) automatically selected the par-
ticular phoneme on which speaker recognition was to be based. When a vowel
was selected, the subsequent analysis consisted of determining whether the
average spectral slope in each of 19 frequency bands was positive, zero, or
negative for the duration of the vowel. For 20 samples of a given vowel from
a particular speaker, a 19 x 3 reference matrix was computed; this matrix
listed for each of the 19 frequency bands the relative frequencies of occurrence
of the three spectral slopes. Three further vowel samples from the same speaker
were used to compute a similar 19 X 3 test matrix. Thus, the matrix configura-
tion did not involve amplitude specifications. The results obtained when dis-
crimination was based on single vowels, and when the error measures were
averaged over four vowels, are shown in Tables 18 and 19, respectively. The
relatively low scores obtained for some combinations of speakers and vowels
(Table 18) can be attributed to inaccuracies in the automatic recognition of
the vowels.

TaBLE 18. Accuracy of rejection of imposters (in percent) for 11 speakers when discrimi-
nation is based on a single vowel. (Reprinted, by permission, from Meeker, 1967.)

Accuracy of Rejection (%)

Speaker

/1/ e/ fu/ /al
RC 92 33 47 85
HZ 80 85 70 43
AT 73 83 57 92
EG 82 53 88 93
Ju 57 65 62 65
RT 82 52 53 70
GC 85 87 42 35
IF 40 83 22 90
Js 82 100 52 95
AS 83 37 2 37
PS 97 70 55 97

The level of performance which can be achieved using this approach depends
heavily on the accuracy with which the desired phoneme can be located in
each utterance. Automatic speech recognition is a particularly difficult problem
which has both interested and discouraged investigators throughout the history
of speech research. Although the underlying requirements are fairly well under-
stood from a theoretical point of view (Young and Hecker, 1968), they cannot
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TaBLE 19. Accuracy of rejection of imposters (in percent) for 11 speakers when discrimi-
nation is based on four vowels. (Reprinted, by permission, from Meeker, 1967.)

Speaker Accuracy of Rejection (%)
RC 100
HZ 100
AT 93
EG 100
Ju 95
RT 93
GC 100
JF 97
is 100
AS 71
PS 100

be readily incorporated into a practical recognition scheme. All presently
available speech recognizers are prone to certain kinds of errors.

Carbonell, Grignetti, Stevens, Williams, and Woods (1965) proposed another
method for avoiding the need of an overall temporal alignment. This method
involves the automatic location of spectral landmarks in an utterance, but it
does not depend on speech recognition per se. The basic concept is illustrated
in Figure 32. For a given utterance of a particular cue word, in this case the
word baseball, successive spectra are examined and certain obvious spectral
landmarks are selected. In the example shown, the landmarks are: (1) an
initial level increase in all frequency bands, corresponding to the release of the
stop consonant [b] in base, (2) an initial level decrease in the two lowest
frequency bands, corresponding to the cessation of voicing in base, and (3)
a second level increase in all frequency bands, corresponding to the release
of the stop consonant [b] in ball. The only requirement for a spectral landmark
is that it can be reliably detected by relatively simple circuitry; no speaker
recognition is performed with these spectra. The spectral landmarks are
temporally independent in the sense that their relative positions in time may
vary from utterance to utterance.

Associated with each spectral landmark are one or more spectra which are
sampled and used for recognition purposes. These sampled spectra are located
as close as possible to their respective landmarks in order to minimize the
effects of temporal misalignment. The specific locations of the sampled spectra
are selected on the basis of knowledge about which time intervals of the utter-
ance are likely to provide maximum differentiation among speakers. In general,
regions containing spectral transitions are more useful than regions of relative
specfral stability (Stevens, House, and Paul, 1966). Preliminary results ob-
tained with this method are promising; the data for the individual sampled
spectra appear to be relatively independent, so that a high overall score may be
obtained if these data are combined.

Schroeder (1968) suggested a method for actually accomplishing time nor-
malization. In this method, pairs of parameters believed useful for speaker
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Ficure 32. Typical outiut of spectrum ana-
lyzer for the cue word baseball. Shown are
three temporally independent spectral land-
marks that locate the spectra to be sampled.
(Adapted, by permission, from Carbonell et al,,
1965.)
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recognition are extracted from the utterances to be compared. Each pair of
parameters defines a plane in which each utterance is represented by the con-
tour which is traced out as the parameter values change during the production
of the utterance. Two utterances are compared by computing a measure of
the similarity of their contours, If the two contours are sufficiently similar, as
determined by a selected decision threshold, the represented utterances are
ascribed to the same speaker. This method eliminates the effects of unknown
timing differences between utterances, such as those introduced by variations
in speaking rate. A demonstration of the similarity of two contours repre-
senting slow and fast utterances of the word lion by the same speaker is shown
in Figure 33. In this example, the two parameters are formant frequencies.

2.0
SLOwW FAST =32
2 - , r z3
N : 1 ] | g
T f ! | | =z
i ! ' ! SECOND &
| I | ] FORMANT Ly |5 -
> ! | 1 ! Ouz_'
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Ficure 33. Demonstration of contour similarity despite differences in speaking rate.
Shown are (a) formant-frequency traces from spectrograms of slow and fast utterances of
the word lion by the same speaker, and (b) contours for the two utterances in the formant-
frequency plane. ( Adapted, Ey permission, from Schroeder, 1968.)

To date, there are no published studies in which this method of time nor-
malization was used. The level of success that can be achieved with this
method is expected to depend largely on the choice of parameters. Problems
dealing with the selection and extraction of parameters appropriate for differ-
entiating among speakers are considered in the following section.

C. TECHNIQUES USING STATISTICAL

ANALYSES OF SPEECH PARAMETERS
The recognition techniques to be described in this section involve two dis-
tinct processes: (1) parameters thought to be useful for differentiating among
speakers are extracted from the speech signal, and (2) decision rules are
applied to combinations of parameter values that represent particular speech
samples. It is conventional to regard the parameters as defining a multidimen-
sional observation space in which the speech samples are located and in which
the decision rules operate. For example, if only two parameters are extracted,
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the observation space is a plane; a speech sample can be located in this plane
by means of its two parameter values. In most cases, however, more than two
parameters are extracted, and the observation space is more difficult to
visualize. The choice of parameters influences the instrumentation requirements
of the technique, the complexity of the decision rules, and the level of recogni-
tion that can be achieved.

1. Selection of Decision Rules

The decision rules are selected largely on the basis of the distribution in the
observation space of speech samples representing different speakers. Three of
the most frequently encountered distributions of speech samples are shown
in Figure 34. For the sake of clarity, this figure involves only two parameters,
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labeled V; and V5, and only four speakers. Part (a) illustrates the case where
a single speech sample is available from each speaker. Although the particular
four samples shown are well separated in the observation space, there is no
assurance that another set of four samples would be similarly positioned and
separated. The degree to which the selected parameters actually differentiate
among the speakers is best evaluated by obtaining a large number of speech
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samples from each speaker. Parts (b) and (c) of this figure illustrate two
possible distributions of such samples; the samples from each speaker may
be clustered together in a particular region of the observation space, or they
may be scattered over the entire space. Even if the samples are clustered, there
is usually some overlap of the regions associated with different speakers. In the
illustration, the regions associated with Speakers A, B, and C are not as distinct
as the region associated with Speaker D. When the samples are distributed in a
manner that does not allow particular regions to be associated with particular
speakers, it is still possible that the samples from each speaker are distributed
in some characteristic pattern.

Decision rules applicable to the case where only one speech sample is avail-
able from each speaker usually use distance measures (Clarke, Becker, and
Nixon, 1966). The assumption is made that as the differences between respec-
tive parameter values for two speech samples increase, the smaller is the proba-
bility that the two samples were produced by the same speaker. If it can be
further assumed that the selected parameters are largely independent and that
they are equally useful for differentiating among speakers, the simplest measure
is the Euclidean distance between the two samples.> In view of these apparent-
ly restrictive assumptions, other distance measures have also been investigated,
but none has proved significantly superior to Euclidean distance.

Two applications of decision rules using Euclidean distance measures are
illustrated in Figure 35. In the first situation, in which an identification decision
is to be rendered, a test sample from the speaker to be identified (Speaker X)
is compared with four reference samples (from Speakers A, B, C, and D).
The distances between the test sample and each of the reference samples are
determined, and the speaker associated with the shortest distance ( Speaker A)
is assumed to have produced the test sample. In the second situation, in which
a discrimination decision is to be rendered, the test sample is compared with
only one reference sample (from Speaker A). A decision threshold is required
in order to decide whether the two samples were produced by the same speaker
or by different speakers. Various kinds of thresholds can be used; here the
threshold is simply a circle centered on the reference sample. The radius of
the circle indicates the maximum allowable distance at which a test sample
can still be considered as having been produced by Speaker A. An alternative
to using a fixed threshold is to vary the threshold progressively so as to provide
several decision criteria for the preparation of a ROC curve (see Chapter III).

It is apparent that the two situations just described resemble the tasks per-
formed by a human listener in the multiple-choice identification test and the
discrimination test. Disregarding possible effects of memory from test item to

2In n-dimensional Euclidean space, which is an extension of ordinary three-dimensional
space, the distance between any two pointsx = ( x,..., % )andy = (@, ..., yn ) is
defined as
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Ficure 35. Decision rules using Euclidean distance measures between single samples.
Shown are (a) distance measures between a test sample and four reference samples, suitable
for an identification decision, and (b) a distance measure between two samples, suitable for
a discrimination decision,

test item, the listener is required to identify a test sample by comparing it with
only one reference sample from each speaker (including the speaker to be
identified), or to discriminate between a single pair of speech samples. Of
course, the listener does not necessarily extract the same parameters, or use
the same decision rules, as a machine. Nevertheless, because of the gross simi-
larity between these two types of tasks, recognition scores obtained using
Euclidean distance measures may be compared with scores achieved by listen-
ers on tests involving the same speech material. Such comparisons have been
made, and will be discussed further in Section E.

Decision rules using Euclidean distance measures may also be applied when
many speech samples are available from each speaker, provided that the
samples are clustered. In such a case, each cluster may be represented by a
single point, such as its centroid. All distances are measured between these
points. This form of analysis, however, does not take advantage of all of the
information inherent in the makeup of each cluster. More appropriate decision
rules may be applied in the case of clustered distributions (Welch and Wim-
press, 1961). These rules involve the use of boundaries to dissect the observa-
tion space into regions that can be associated with single speakers or small
groups of speakers. When the decision boundaries are hyperplanes rather than
nonlinear surfaces, the recognition technique is usually easier to instrument.

The application of decision rules using linear boundaries is illustrated in
Figure 36. Since the observation space shown in Part (a) of this figure is a
plane, the boundaries are straight lines. The first line, labeled 1---], separates
the cluster representing Speaker A from the clusters representing Speakers C
and D in a manner that provides approximately equal areas of overlap for
each cluster. Line 1---1 passes through the middle of the cluster representing
Speaker B and therefore does not separate this cluster from any of the other
clusters. Considering now only data to the left of Line I---1, Line 2---2 separates
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Ficune 36. Decision rules using linear boundaries to dissect a clustered distribution of
samples. Shown are (a) orientation of boundaries in observation space, and (b) decision
tree for identifying test samples.

the two clusters representing Speakers A and B. Considering only data to the
right of Line 1---1, Line 3---3 separates the cluster representing Speaker D
from the clusters representing Speakers B and C. Finally, considering only
data to the right of Line 1---1 and above Line 3---3, Line 4---4 separates the
two clusters representing Speakers B and C. The corresponding decision tree
for identifying a test sample is shown in Part (b) of this figure. When the test
sample falls into any of the areas of overlap that were necessarily compromised
when the lines were placed, the sample will be incorrectly identified. For
example, a sample from Speaker A falling to the right of Line 1---1 would be
incorrectly associated with Speaker C.

Decision rules using probabilistic measures (Sebestyen, 1962) are also
applicable to a clustered distribution. These rules must always be applied in the
case of a nonclustered distribution. Recognition techniques using these rules
involve two modes of operation: a learning mode and a recognition mode.
During the learning mode, as many speech samples as possible are obtained
from each speaker. The distribution of samples for each speaker is then used
to estimate a multivariate probability-density function which describes the
most likely distribution of further data from the same speaker. Additional
samples are more likely to have certain spatial locations than others, and this
function provides a ranking of these locations according to their probability
of being occupied. The probability-density functions thus computed for the
participating speakers are stored. During the recognition mode, either a single
test sample or a distribution of test samples may be obtained from a speaker
to be identified. It is often possible to associate a single test sample with one
speaker for whom the probability of occupancy of the location specified by the
test sample is highest. An example of this procedure is shown in Figure 37,
where the test sample would be associated with Speaker B. In some instances,
however, the probabilities for several speakers may be identical, perhaps as
a consequence of insufficient data acquisition during the learning mode. A
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Ficure 37. Decision rules using probabilistic measures for treating a nonclustered
distribution of samples. Shown are estimated multivariate probability-density func-
tions for four speakers, and specific measures for identifying a single test sample.

single test sample may also be identified incorrectly. More accurate identifica-
tion is possible when a distribution of test samples is available; the test dis-

Hecker: Speaker Recognition 91



tribution is then associated with that speaker for whom the conditional prob-
ability of its occurrence is highest.

For a given set of parameters, several factors influence the level of recogni-
tion that can be achieved with decision rules using probabilistic measures.
These include the number of speech samples processed during the learning
mode, the number of speech samples processed during the recognition mode,
the similarity of the speech materials used during the learning and recognition
modes, bandwidth limitations imposed upon the speech signal during either
or both modes, noise added to the speech signal during either or both modes,
and the size and homogeneity of the speaker ensemble. Under optimal experi-
mental conditions, when the speech is not degraded or distorted, a minimum
of about two minutes of connected speech must be sampled during the learning
mode. When the speech signal is degraded, the parameters may be extracted
less accurately, and considerably more time may be required. Many of these
factors also affect performance when the other decision rules are used.

2. Selection of Speech Parameters

Questions regarding the most appropriate speech parameters have generally
not been resolved as well as have questions regarding optimal decision rules.
Various kinds of parameters have been examined, using both waveform analyses
and spectral analyses of the speech signal. Some studies have considered only
parameters which are relatively easy to extract, such as the outputs of a bank of
bandpass filters. Other studies have used more sophisticated parameters, such
as formant frequencies, even at the expense of manual (rather than automatic)
parameter extraction. The sophisticated parameters, however, do not necessarily
produce higher recognition scores. It must be remembered that the formant
frequencies are continually changing and that the recognition techniques dis-
cussed here do not take into account specific cue material. If formant frequen-
cies were selected as parameters, recognition would be performed on the basis
of comparing arbitrarily sampled formant-frequency values rather than average
values representing specific vowels. Much rudimentary information about the
distribution of formant frequencies is also contained in a series of spectral
profiles obtained with a filter bank.

Clarke and Becker (1969) investigated the relative merits of various param-
eters and sets of parameters, including mean fundamental frequency, several
measures of variability of fundamental frequency, the long-term spectrum,
portions of the long-term spectrum, and overall duration. The speech samples
consisted of short sentences, and the decision rules used Euclidean distance
measures taken between single samples. Both identification decisions and
discrimination decisions were obtained; the discrimination decisions were
recorded in the form of ROC curves. The results, shown in Tables 20 and 21,
indicate that the long-term spectrum was superior to any other parameter or
set of parameters. This demonstrates that there are long-term spectral differences
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TasLe 20. Recognition scores (in percent) obtained for various parameters and sets of
parameters extracted from speech samples that were used in an aural four-choice identifica-
tion test. On the aural test, listeners scored 63-67% correct.

Parameter or Set of Parameters Score (%)

Mean Fundamental Frequency 42
Variability of Fundamental Frequency 32-35
Long-Term Spectrum

(24 One-Third Octave Band Filters, 50-10,000 Hz) 63
Lower Portion of Long-Term Spectrum

(12 One-Third Octave Band Filters, 50-630 Hz) 54
Upper Portion of Long-Term Spectrum

(12 One-Third Octave Band Filters, 800-10,000 Hz) 52
Individual One-Third Octave Bands 28-42
Overall Duration

(Normalized for Sentence Length) 32

among speakers.® It is interesting to note that the lower and upper portions of
the long-term spectrum apparently contribute equally to speaker recognition.
In fact, the individual filter bands were not found to produce greatly different
recognition scores.

Hargreaves and Starkweather (1963) used only one set of spectral param-
eters. They recorded extemporary speech from each of 12 female speakers
during 18 experimental sessions. Six sessions were held on each of three days
that were spaced one week apart. The speech was processed by a spectrum
analyzer consisting of 18 one-third octave band filters (covering the frequency
range 100-5000 Hz), 18 detectors, and 18 integrators. Two alternate banks of
18 storage capacitors were switched at two-second intervals between positions
of data acquisition and data reduction. Thus, every two seconds an 18-channel

TasLe 21. Recognition scores (in percent) obtained for various parameters and sets
of parameters extracted from speech samples that were used in an aural discrimination test.
The scores are optimal points on ROC curves. On the aural test, listeners scored 90% correct
(optimal point on the median ROC curve).

Parameter or Set of Parameters Score (%)
Mean Fundamental Frequency 66
Distribution of Fundamental Frequency 67
Long-Term Spectrum
(I7 One-Third Octave Band Filters, 100-4000 Hz) 83
Individual One-Third Octave Bands 58-69

3Pruzansky (1963) reached the same conclusion.
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spectral profile was obtained for amplitude quantization and computer process-
ing. Sixty spectral profiles, or speech samples, from each speaker were used to
define linear boundaries in the observation space and to construct a 12-speaker
decision tree. These speech samples represented in each case the first experi-
mental session on the first and second days. The speech samples representing
the remaining 16 sessions constituted the test samples. As shown in Table 22,

Tasre 22. Confusions and recognition scores {(in percent) for 12 speakers participating
in 16 experimental sessions. ( Reprinted, by permission, from Hargreaves and Starkweather,
1963.)

Predicted Identity
Score
Speaker %
1 2 3 4 5 6 7 8 9 10 11 12

1 4 - 1 - - - - 1 - - - ° 88

2 T 100

3 - - 15 - - 1 - - - - - - 94

4 - - - 186 - - - - - - - - 100
2 5 4 - 1 -~ 8 - 1 2 - - - - 50
.§ 6 - - - - - 16 - - - - - - 100
=1 - - - - - S 1B 1 - - - - 94
£ 8 - - 2 - - - - 14 - - - - 88
ooy - - - 1 - - 3 11 - - - 69
10 S (- 100
11 i 100
12 _ - - - - - - - - = 1 15 94
Average Score 90

the accuracy of identification varied considerably from speaker to speaker;
the average score was 90%. Most of the errors involved speech samples from
the third day, which was the only day not represented by the decision tree.
This observation is interpreted as evidence of day-to-day variations in the
long-term spectrum of a given speaker.

A recognition technique reported by Smith (1962) used further processing
of the extracted parameters before decision rules using probabilistic measures
were applied. This technique also furnished a large number of spectral profiles
for each speaker, but these profiles were not used directly. Instead, they were
transformed into a new set of parameters providing maximum differentiation
among speakers. The transformation of the spectral measurements was deter-
mined by means of a multidimensional analysis of variance carried out during
the learning mode of the technique.

Ramishvili (1966) investigated the distribution of the interval between
adjacent extremal points in the speech waveform. The analysis of this param-
eter could be accomplished with relatively simple instrumentation and did not
require any amplitude normalization of the speech signal. Lengthy speech
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samples (2-3 min duration) from 15 speakers were differentiated, peak-clipped,
and processed by a 20-channel interval discriminator. Decision rules using
probabilistic measures were applied to the outputs of the discriminator. Perfect
recognition was achieved when all 20 channels were used; when only the seven
most useful channels were connected, there was a slight reduction in per-
formance.

Among the more extensive searches for suitable parameters is a study by
Edie and Sebestyen (1962). A set of 13 parameters was investigated, using
probabilistic decision rules. The parameters included four formant frequencies,
fundamental frequency, amplitude, and a measure related to the voiced-voice-
less distinction. These parameters were extracted manually to insure their
evaluation under optimal conditions. The results demonstrated that the selected
parameters can lead to very accurate recognition in a controlled environment.

This study was continued by Floyd (1964), who investigated the effects of
bandwidth limitations and additive noise on recognition performance. Two
sets of parameters were examined. One set of 16 so-called spectral parameters
included the frequencies and amplitudes of the first, second, and third for-
mants, fundamental frequency, a measure related to the voiced-voiceless dis-
tinction, and a measure of the speech envelope. The other set of eight so-called
rudimentary parameters included the average, maximum, and minimum values
of fundamental frequency, and the duration of the voiced interval over which
these measurements were taken. All parameters were extracted automatically
by a combination of hardware and computer processing. A rudimentary pa-
rameter was typically associated with a much lower data rate than a spectral
parameter.

Different probabilistic decision rules were applied to the two sets of pa-
rameters; the rules used with the spectral parameters were considerably more
complex than the rules used with the rudimentary parameters. Nevertheless,
recognition using the rudimentary parameters was found to be generally
superior to recognition using the spectral parameters, especially with noisy
or band-limited speech. The technique using the spectral parameters suffered
primarily from large errors made in extracting the formant frequencies. This
study thus demonstrates that parameters yielding acceptable recognition scores
under controlled conditions may be totally inadequate under less favorable but
perhaps more realistic conditions.

D. MACHINE FALLIBILITY

One of the reasons for pursuing speaker recognition by machine is the belief
that this method is potentially less fallible than other methods because it
excludes human error. While the methods of speaker recognition employing
listeners and observers are undoubtedly influenced by the limitations of human
perception, memory, and judgment, it is important to realize that machines also
introduce errors. Excluding errors attributable to mechanical or electronic
malfunctions, machine errors are typically due to design shortcomings and
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inadequate programming, Specific examples of such problems are the depen-
dence on an accurate temporal alignment of utterances of specific cue material,
the extraction of inefficient parameters, and the application of arbitrary and in-
flexible decision rules. These problems reflect not only economic considerations
but also a relatively poor understanding of the acoustical correlates of speaker
identity. At the present time, the fallibility of speaker recognition by machine is
far from negligible.

There are, however, operational situations in which the errors associated
with a given technique are tolerable. For example, in a communication situa-
tion involving a cooperative speaker who is to be authenticated for security
purposes, several available techniques providing discrimination may be applied
successfully. If many prior utterances of a password (specific cue material) are
available for the speaker, if other speakers are not likely to use this same
password, and if the speaker does not mind repeating his password in case he
is falsely rejected, the accuracy with which imposters are rejected may be
very high. By varying only the decision threshold, the probability of a false
rejection may be decreased, at the expense of increasing the probability of
accepting an imposter, until a balance is reached that is best suited to the
particular situation,

E. COMPARISON WITH SPEAKER
RECOGNITION BY LISTENING

Clarke and Becker (1969) obtained machine recognition scores which could
be compared with the achievement of their listeners on an aural four-choice
identification test and an aural discrimination test. The average listener scores
on these two tests were 63-67% and 90%, respectively. For the discrimination
test, the score was the optimal point on the median ROC curve. The corre-
sponding machine scores are given in Tables 20 and 21. These machine scores
were based on the identical speech samples that were heard in the aural tests.

In the comparison involving the identification task, it is noted that only the
machine score obtained for the entire long-term spectrum (63%) closely resem-
bles the listener score; the other machine scores are considerably lower. Also,
in the comparison involving the discrimination task, only the machine score
obtained for the entire long-term spectrum (83%) approaches the listener score.
It may be concluded from these comparisons that human listeners are gen-
erally able to extract more speaker-dependent information from the speech
signal than is contained in relatively simple physical measures, including fun-
damental frequency. Some physical measures, however, appear to contain
much information that is relevant to speaker recognition.

As pointed out by Clarke and Becker (1969), human listeners do not neces-
sarily use the same parameters that have been found advantageous for machine
recognition. The nature of the decision rules used by listeners is also insuffi-
ciently understood. Analyses of the responses obtained on aural tests sometimes
suggest that individual listeners use different acoustical clues and different
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criteria in their evaluations of speech signals. A given listener may also modify
his strategy as a test proceeds, especially if he is given some indication of his
immediate performance. Other factors that may favorably influence listener
scores include auditory memory from test item to test item, and prior experi-
ence in differentiating among speakers with perceptually similar voices. In
speculating on possible reasons for the superiority of listeners over machines
in recognizing speakers, it is well to remember that even the most naive listener
has lived in a speech environment for a considerably longer period of time
than any machine. The experience he has thus acquired cannot be readily
defined and analogized.
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Chapter VI

SUMMARY

The acoustical properties of a given word or phrase vary from speaker to
speaker (interspeaker variability) and, for a particular speaker, from utterance
to utterance (intraspeaker variability ). Speaker variability in the speech signal
reflects many differences in speech production, including differences in glottal-
source characteristics, vocal-tract configurations, and articulatory transitions.
Although speaker variability is difficult to quantify, it is possible to estimate the
relative magnitudes of interspeaker and intraspeaker variability from several ex-
perimental studies. Interspeaker variability ordinarily exceeds intraspeaker
variability. This fact is the basis for all methods of speaker recognition.

The oldest and most widely studied method is speaker recognition by listen-
ing. Several speakers are recorded reading selected speech material, the record-
ings are edited and presented to listeners, and the listeners carry out a recogni-
tion task. Many variables affect listener performance, including the size of
the speaker group, the kind of speech material used, and the task assigned to
the listeners. A test format provides control over these variables. The most
common tests are the multiple-choice identification test, in which the listener
matches a speech sample to one of a number of reference samples, and the
discrimination test, in which the listener decides whether two speech samples
were uttered by the same speaker or by different speakers.

Research on speaker recognition by listening is also concerned with the
perceptual factors which underlie the ability of listeners to differentiate among
voices. These factors are usually explored with the voice-attribute rating test,
in which the listener rates a speech sample on many psychological scales.
Another research objective is knowledge of the acoustical manifestations of
speaker identity. To determine what features of the speech signal are speaker
dependent, the speech signal is selectively modified and the effects on listener
performance are noted. Speaker recognition by listening is also used to evaluate
communication systems,

A second method is speaker recognition by visual comparison of spectro-
grams. This method of speaker recognition makes use of an instrument (the
sound spectrograph) which provides a visual display of the speech signal
(a spectrogram). Several speakers are recorded reading selected cue material,
spectrograms of different utterances of the same cue material are prepared
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and presented to observers, and the observers carry out a recognition task.
Among the many variables affecting observer performance are the context in
which the cue material was uttered, the type of spectrogram used, and the
training of the observers. The most common tests are the multiple-choice iden-
tification test and the discrimination test. These tests resemble the same-named
tests used in speaker recognition by listening. Experiments involving both
methods of speaker recognition indicate that speaker recognition by visual com-
parison of spectrograms is less accurate. However, these experiments were con-
ducted with minimally trained observers.

Speaker recognition by visual comparison of spectrograms is used as an in-
vestigative tool by law-enforcement agencies. Many published claims about
the accuracy and reliability of this method of speaker recognition are not
adequately supported by experimental data. For these reasons, the method
must be studied further. The practice of referring to a spectrogram as a
voiceprint is misleading; it suggests a direct analogy between spectrograms and
fingerprints, whereas no such analogy exists.

A third method is speaker recognition by machine. There are two approaches:
The machine can be designed to generate and examine amplitude-frequency-
time matrices of specific cue material, or to extract and analyze speaker-
dependent parameters of the speech signal. Many of the recognition techniques
using specific cue material require, but do not provide, an accurate temporal
alignment of the data matrices being compared. Those techniques that avoid
the problem of temporal alignment are considered more promising. The recog-
nition techniques using statistical analyses of speech parameters are handi-
capped by a lack of knowledge of efficient speaker-dependent parameters and
by difficulties in extracting the selected parameters from the speech signal.
In both approaches, the application of decision rules to the data that represent
the different speakers is well understood. At the present time, speaker recogni-
tion by machine is considerably less accurate than speaker recognition by
listening, but this performance gap is likely to close as research continues
and new machines are developed.
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